Physics 318: Problem Set 12
Due Wednesday, April 30, 2008

1. Poisson Brackets:
 a. Show that the Poisson bracket \(\{ F, G \} \) of two functions \(F \) and \(G \) on phase space can be written as
 \[
 \{ F, G \} = \frac{\partial F}{\partial \eta_i} J_{ij} \frac{\partial G}{\partial \eta_j}.
 \]
 Here the vector \(\eta \) and the \(2f \times 2f \) matrix \(J \) are the quantities defined in lecture, given by
 \[
 \eta_i = q_i, \eta_{f+i} = p_i, \quad J_{ij} = 0, \quad J_{i,f+j} = \delta_{ij}, \quad J_{f+i,f+j} = 0 \quad \text{for} \quad 1 \leq i, j \leq f.
 \]
 b. Show that a mapping from the phase space coordinates \(\eta_i \) to new phase space coordinates \(\zeta_i \) is canonical if and only if it preserves Poisson brackets, i.e. if
 \[
 \frac{\partial F}{\partial \eta_i} J_{ij} \frac{\partial G}{\partial \eta_j} = \frac{\partial F}{\partial \zeta_i} J_{ij} \frac{\partial G}{\partial \zeta_j}
 \]
 for any functions \(F \) and \(G \) on phase space.

2. The wave equation:
 a. Show that the wave equation
 \[
 \frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0
 \]
 is solved by \(u(x,t) = f(x-ct) + g(x+ct) \) where \(f \) and \(g \) are arbitrary functions of a single variable.
 b. For the case of the string discussed in lectures, determine the functions \(f \) and \(g \) such that the boundary conditions \(u(0,t) = u(l,t) = 0 \) and the initial conditions \(u(x,0) = F(x) \) and \(\dot{u}(x,0) = G(x) \) are satisfied.

3. Action principle for electromagnetic fields: Consider the action functional
 \[
 S[\Phi(x,t), A(x,t)] = \int dt \int d^3x \left[\frac{1}{2} \varepsilon_0 (\nabla \Phi + \dot{A})^2 - \frac{1}{2\mu_0} (\nabla \times A)^2 - \rho \Phi + j \cdot A \right].
 \]
 This is a functional of the scalar potential \(\Phi \) and the vector potential \(A \), and depends also on the charge density \(\rho(x,t) \) and current density \(j(x,t) \). Here \(\varepsilon_0 \) is the permittivity of empty space and \(\mu_0 \) is the permeability of empty space.
 a. By varying the action with respect to the scalar potential \(\Phi \), derive the equation
 \[
 \nabla^2 \Phi + \nabla \cdot \dot{A} = -\rho/\varepsilon_0.
 \]
 b. By varying the action with respect to the scalar potential \(A \), derive the equation
 \[
 \mu_0 \varepsilon_0 (\nabla \Phi + \dot{A}) + \nabla (\nabla \cdot A) - \nabla^2 A - \mu_0 \dot{j} = 0.
 \]
 c. Using the expressions
 \[
 E = -\nabla \Phi - \dot{A}, \quad B = \nabla \times A
 \]
 for the electric and magnetic fields in terms of the potentials, deduce from a. and b. the four Maxwell equations
 \[
 \nabla \cdot E = \rho/\varepsilon_0, \quad \nabla \cdot B = 0,
 \]
 \[
 \nabla \times E = -\dot{j}, \quad \nabla \times B = \mu_0 \dot{A}.
 \]
\[\nabla \times \mathbf{E} = -\dot{\mathbf{B}}, \quad \nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \dot{\mathbf{E}} + \mu_0 \mathbf{j}. \]

d. Now suppose that the electric and magnetic fields are coupled to \(N \) point particles of masses \(m_n \), charges \(q_n \), and positions \(\mathbf{x}_n(t) \) for \(1 \leq n \leq N \). The charge density and current density are then

\[
\rho(\mathbf{x}, t) = \sum_{n=1}^{N} q_n \delta^3[\mathbf{x} - \mathbf{x}_n(t)], \quad \mathbf{j}(\mathbf{x}, t) = \sum_{n=1}^{N} q_n \dot{\mathbf{x}}_n(t) \delta^3[\mathbf{x} - \mathbf{x}_n(t)].
\]

The total action for the system consisting of the electric and magnetic fields and the point particles can be obtained by adding to the above action the kinetic energy

\[
\sum_{n=1}^{N} \int dt \frac{1}{2} m_n \dot{\mathbf{x}}_n^2
\]

for the particles. By varying this total action with respect to the positions of the particles, derive the equation of motion

\[
m_n \ddot{\mathbf{x}}_n(t) = q_n \mathbf{E}[\mathbf{x}_n(t), t] + q_n \dot{\mathbf{x}}_n(t) \times \mathbf{B}[\mathbf{x}_n(t), t]
\]

for \(1 \leq n \leq N \).

4. Consider a simple one-dimensional model of a crystal consisting of an infinite chain of identical point masses of mass \(m \) connected by identical springs of length \(a \) and force constant \(f \). In equilibrium, the distance between two successive is the lattice spacing \(a \). Let the displacement of the \(n \)th point mass from its equilibrium position be \(x_n(t) \).

\[
\begin{array}{c}
\begin{array}{cccc}
\text{m} & \text{m} & \text{m} & \text{m} \\
\text{f} & \text{f} & \text{f} \\
X_{n-1} & X_n
\end{array}
\end{array}
\]

a. Derive the Lagrangian and equations of motion for the chain.

b. Show that for an arbitrary real constant \(k \), the Bloch wave

\[
x_n(t) = \text{Re} \left[Q_k(t) \exp(ikna) \right]
\]

defines a normal mode, i.e. that the equations of motion can be satisfied by an ansatz of the form \(Q_k(t) = A_k \exp(i\omega_k t) \). Argue that without loss of generality the constant \(k \) can be restricted to the range \(-\pi/a \leq k \leq \pi/a\). Make a sketch of the eigenfrequencies \(\omega_k(k) \) as a function of \(k \). This relation is called a dispersion relation.

c. Consider now a finite chain of \(N \) masses subject to the periodic boundary condition \(x_n(t) = x_{n+N}(t) \). Show that this boundary condition leads to a discrete set of values \(k_m, m = 1, 2, 3, \ldots \), and determine these values. How many physically different values of \(k_m \) exist, and what are the corresponding eigenfrequencies \(\omega_m = \omega(k_m) \)? Write down the general solution for the motion of the chain and describe its properties.