Physics 7683 : Problem Set 1
Due Thursday, Sept 17, 2009

1. Bogolubov Transformations for Special Cases: Consider the time dependent harmonic oscillator
\[H = \frac{\hat{p}^2}{2} + \omega(t)^2 \frac{\hat{q}^2}{2}, \]
where \(\omega(t) \) is a smooth function taking the values \(\omega(t) = \omega_{\text{in}} \) at early times and \(\omega(t) = \omega_{\text{out}} \) at late times. The Bogolubov coefficients are defined by taking the solution
\[q(t) = \exp[-i\omega_{\text{in}}t]/\sqrt{2\omega_{\text{in}}} \]
which is purely positive frequency at early times, and writing it at late times as a linear combination of positive and negative frequency solutions:
\[\sqrt{2\omega_{\text{out}}}q(t) = \alpha^* \exp[-i\omega_{\text{out}}t] - \beta \exp[i\omega_{\text{out}}t]. \]
In this problem we will compute the coefficients in some special cases.

a. Consider the adiabatic regime \(\dot{\omega}/\omega^2 \ll 1 \). By performing a WKB type analysis show that the leading order solution that is purely positive frequency at early times is
\[q(t) = \frac{1}{\sqrt{2\omega(t)}} \exp \left[-i \int dt' \omega(t') \right]. \]
Deduce that in this approximation the transformation is trivial, \(\beta = 0 \). Does this result continue to hold when one computes the subleading WKB (post adiabatic) corrections? [Hint: Replace \(\omega \) by \(\omega/\epsilon \) in the differential equation, use an ansatz of the form \(q(t) = [A(t) + \epsilon B(t) + \ldots] \exp[i\phi(t)/\epsilon] \), and expand the differential equation in powers of \(\epsilon \).]

b. Suppose that the frequency can be written as
\[\omega(t) = \omega_{\text{in}} + \Delta \omega(t), \]
where the frequency perturbation is small, \(\Delta \omega \ll \omega_{\text{in}} \) and also \(T \Delta \omega \ll 1 \) where \(T \) is the duration of the period of time evolution. Derive an expression for \(|\beta| \) in terms of the Fourier transform of \(\Delta \omega \). Use your result to argue that if \(\omega(t) \) is smooth, then \(|\beta| \) goes to zero faster than any power of \(1/(\omega_{\text{in}} \tau) \) in the limit \(\tau \rightarrow \infty \), where \(\tau \) is the timescale over which \(\omega(t) \) changes. Also argue that if any finite-order derivative of \(\omega(t) \) has a discontinuity, then \(|\beta| \) will scale as a power law \(\propto 1/(\omega_{\text{in}} \tau)^n \) for some finite integer \(n \).

c. Suppose that the frequency \(\omega(t) \) changes instantaneously from \(\omega_{\text{in}} \) to \(\omega_{\text{out}} \) at \(t = 0 \). Show that for this case the Bogolubov coefficients are given by
\[\alpha = \frac{1}{2} \left(\sqrt{\frac{\omega_{\text{in}}}{\omega_{\text{out}}}} + \sqrt{\frac{\omega_{\text{out}}}{\omega_{\text{in}}}} \right), \quad \beta = \frac{1}{2} \left(\sqrt{\frac{\omega_{\text{in}}}{\omega_{\text{out}}}} - \sqrt{\frac{\omega_{\text{out}}}{\omega_{\text{in}}}} \right). \]

2. Normal Ordered Form of Squeezing Operator: Consider the Hilbert space of a harmonic oscillator whose annihilation operator is \(\hat{a} \). In this problem you will derive the normal ordered form of the squeezing operator \(\hat{S} \) which is defined by the property
\[\hat{S}^\dagger \hat{a} \hat{S} = \alpha \hat{a} + \beta^* \hat{a}^\dagger, \]
where α and β are complex numbers. In other words, you will derive the function $\bar{f}^{(n)}(\mu, \mu^*)$ of a complex variable μ and its complex conjugate μ^* for which

$$\hat{S} = : \bar{f}^{(n)}(\hat{a}, \hat{a}^\dagger) :$$

a. Using the fact that coherent states $|\mu\rangle$ are eigenstates of the annihilation operator, argue that

$$\bar{f}^{(n)}(\mu, \mu^*) = (\mu | \hat{S} | \mu).$$

b. Show that for any function g, we have

$$[g(\hat{a}), \hat{a}^\dagger] = g'(\hat{a}).$$

c. Write hermitian conjugate of the defining relation (1) in the form $\hat{a}^\dagger \hat{S} = \hat{S} (\alpha^* \hat{a}^\dagger + \beta \hat{a})$, multiply on the left by $(\mu |$ and on the right by $| \mu)$ Show using parts a. and b. that this gives the differential equation

$$\mu^* \bar{f}^{(n)}(\mu, \mu^*) = \beta \mu \bar{f}^{(n)}(\mu, \mu^*) + \alpha^* (\mu^* + \frac{\partial}{\partial \mu}) \bar{f}^{(n)}.$$

Similarly from $\hat{a} \hat{S} = \hat{S} (\alpha \hat{a} + \beta^* \hat{a}^\dagger)$ derive the differential equation

$$\left(\mu + \frac{\partial}{\partial \mu} \right) \bar{f}^{(n)}(\mu, \mu^*) = \alpha \mu \bar{f}^{(n)}(\mu, \mu^*) + \beta^* \left(\mu^* + \frac{\partial}{\partial \mu} \right) \bar{f}^{(n)}.$$

d. Solve this pair of differential equations using an ansatz of the form

$$\bar{f}^{(n)} = \mathcal{N} \exp \left[A \mu^2 + B \mu \mu^* + C (\mu^*)^2 \right],$$

where \mathcal{N}, A, B and C are constants. Deduce the value of the normalization constant \mathcal{N} from $1 = \langle 0 | \hat{S}^\dagger \hat{S} | 0 \rangle$ as in lecture. Thereby deduce that

$$\hat{S} = |\alpha|^{-1/2} : \exp \left[-\frac{\beta}{2\alpha} \hat{a}^2 + \frac{\beta^*}{2\alpha} \hat{a}^\dagger 2 + \left(\frac{1}{\alpha^2} - 1 \right) \hat{a}^\dagger \hat{a} \right] :.$$

3. **Time-dependent, Driven Harmonic Oscillator:** In this problem we will generalize the analysis given in lecture to an oscillator which is driven in addition to having a time-varying frequency. The Hamiltonian of the system is

$$\hat{H} = \frac{1}{2} \hat{p}^2 + \frac{1}{2} \omega(t)^2 \hat{q}^2 - J(t) \hat{q}.$$

Assume that the source $J(t)$ vanishes and that the frequency $\omega(t)$ is constant at early times and at late times, with values ω_{in} and ω_{out}. For any state $|\psi\rangle_{in}$ defined on the (Heisenberg picture) in basis, define a corresponding state $|\psi\rangle_{out}$ defined on the out basis by replacing in by out everywhere in the definition of the state. Then we have

$$|\psi\rangle_{in} = \hat{S}^\dagger |\psi\rangle_{out},$$

where \hat{S} is a generalization of the operator derived in lecture. Derive an expression for \hat{S} in terms of squeeze operators, rotation operators and displacement operators.