The Death of the Stars

Lecture 15

ALICE IN WONDERLAND

Lewis Carroll

"There is no use trying," she said. "One can't believe impossible things."

"I daresay you haven't had much practice," said the queen. "When I was your age, I always did it for half-an-hour a day. Why, sometimes I've believed as many as six impossible things before breakfast."
The Death of Stars

<table>
<thead>
<tr>
<th>Mass Range</th>
<th>Fate of Star</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\text{star}} < 1 , M_{\odot}$</td>
<td>Slow gravitational contraction</td>
</tr>
<tr>
<td></td>
<td>Brown dwarfs</td>
</tr>
<tr>
<td>$1 , M_{\odot}$ to $\sim 5 , M_{\odot}$</td>
<td>Mild core collapse</td>
</tr>
<tr>
<td></td>
<td>$\rho \sim 10^7 , \text{g/cm}^3$, $R \sim 7000 , \text{km}$</td>
</tr>
<tr>
<td></td>
<td>White Dwarfs</td>
</tr>
<tr>
<td>$\sim 5 , M_{\odot}$ to $15 , M_{\odot}$</td>
<td>Fast core collapse</td>
</tr>
<tr>
<td></td>
<td>$\rho \sim 3 \times 10^{14} , \text{g/cm}^3$, $R \sim 20 , \text{km}$</td>
</tr>
<tr>
<td></td>
<td>Neutron Stars</td>
</tr>
<tr>
<td>$M_{\text{star}} > 15 , M_{\odot}$</td>
<td>Very fast core collapse</td>
</tr>
<tr>
<td></td>
<td>$\rho > 10^{16} , \text{g/cm}^3$, $R \sim 4 , \text{km}$</td>
</tr>
<tr>
<td></td>
<td>Black holes</td>
</tr>
</tbody>
</table>

Importance of Mass

- The fate of a star is linked to its mass when it nears the end of its life.
- This depends upon
 - Its initial mass
 - How much mass it loses along the way.
Stellar End-Products or what is left?

• White dwarfs
 – Light up planetary nebulae for a while
 – Eventually cool and fade away. They become too faint to see.
• Pulsars → cold Neutron Stars
 – A big nucleus in the sky
• Black Holes → ???

Stars explode!

• Mild Explosion → Planetary Nebula
 – Ejection of the outer layers of the red giant.
• Strong Explosion → Nova
 – Eruptions in a binary star system
• Catastrophic Explosion → Supernova
 – Blasting away of the outer parts of a star
Results of explosions

• Explosions put the processed stellar material back into the interstellar medium for the next generation of stars to use!

• In a Supernova, neutrons bombard nuclei and build up very heavy elements, e.g. Gold, Uranium, etc.

Solar-Mass Star End State

• Eventually He in core is exhausted
 – Core then must begin contracting again, raising its temperature
 – Ignites He shell burning around core
 – We now have twin layers of He and H shell burning – at ever increasing rates
 – Eventually, for solar mass stars, core stabilizes under electron degeneracy pressure
 – Envelope is ejected as a “planetary nebula”
 – Core remains as a “white dwarf”
White Dwarfs

• For $M_{\text{core}} < 1.4 M_{\text{sun}}$, the core is stable.
• A white dwarf forms.
 – Size of the earth but mass of the sun!

• As the star cools we might expect it to get smaller and smaller.
• It doesn’t!
What stops core collapse?

• **The Pauli Exclusion Principle:**
 – No two electrons can be at the same place at the same time with the same energy.

• Electrons can not move closer together because they have nowhere to go.

• The strong repulsion caused by the Exclusion Principle is called
 - *Electron Degeneracy Pressure*
Supernova!

• Massive stars reaching the end of their life can explode violently.

• The interior of the star contracts very rapidly, and the core bounce causes an explosion.

Core Collapse

• For $M_{\text{core}} > \text{few } M_{\text{sun}}$

• During the Red Giant phase, iron is produced in the core.

• Iron won’t “burn”, so the core contracts.
• The temperature rises to billions of degrees.
Core Collapse (cont’d)

• If the iron core becomes too dense, the electrons get high enough energy to penetrate atomic nuclei

• Proton and electrons combine into neutron and neutrinos in a process called “Neutron Drip”.

\[p^+ + e^- \rightarrow n + \nu \]

Core Collapse (cont’d)

• The “disappearance” of the electrons
 \[\Rightarrow \text{no more electron degeneracy pressure} \] (like knocking the legs out from underneath a table)

• The core collapses catastrophically.

• Neutrinos escape carrying away the energy.
Core Collapse (cont’d)

• The neutrons fall toward the center reaching speeds ~0.1-0.2 c.
• The collapse occurs over ~1 second.
• The Pauli Exclusion Principle for neutrons eventually takes effect

\[\Rightarrow \] the falling matter stops instantly

Kaaabbooooommmmm!

• Many of the neutrons BOUNCE and fly outward (like billiard balls).
• They sweep material up with them as they fly outward.
• And we have a very CATASTROPHIC explosion.
Veil SNR
Cassiopeia A Supernova Remnant

Composite x-ray, optical and infrared image

Neutron Star
A Supernova is born

- Enormous amount of energy are released over a very short time.
- The “star” brightens tremendously.
- During a supernova, a star may shine as brightly as an entire galaxy.
So what’s left?

- The core becomes a super dense object, either a
- Neutron Star: $M_{\text{core}} < \text{few } M_{\odot}$
- Black Hole: $M_{\text{core}} > \text{few } M_{\odot}$
- The rest of the star is blown away, becoming a Supernova Remnant.
Accretion onto a White Dwarf

Supernova Light Curves

![Graph showing Supernova Light Curves with Type I and Type II curves.](image)
Some amazing SN numbers

• For a supernova with $M_v = -19$.

• At 0.25 pc (0.8 lyr) from us it would appear as bright as the Sun.

• At 160 pc (520 lyr) from us it would appear as bright as a full moon.

How often do SN happen?

• The rate of Supernovae is

 ~ 1 SN / Galaxy / 50 years

• But there hasn’t been one seen in our galaxy in over 390 years!
Supernova Remnants (SNR)

• Residual material ejected by the explosion.
• Expanding at large velocities initially.
• Sweeps up material around the star.
• Very bright in the radio due to synchrotron radiation.
 – High energy electrons spiral around the magnetic fields of the SNR.
 – Emit lots of radio frequency photons.

Historical (Naked Eye) Supernovae

<table>
<thead>
<tr>
<th>Date (A.D.)</th>
<th>Constellation</th>
<th>Apparent Mag./Dist</th>
<th>Where Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006</td>
<td>Lupus</td>
<td>-5 (> Venus) 3 kpc</td>
<td>Many Places</td>
</tr>
<tr>
<td>1054</td>
<td>Taurus (Crab Nebula)</td>
<td>-5 (> Venus) 2 kpc</td>
<td>China, SW America</td>
</tr>
<tr>
<td>1572</td>
<td>Cassiopeia (Tycho’s SN)</td>
<td>-4 (< Venus) 5 kpc</td>
<td>Many Places</td>
</tr>
<tr>
<td>1604</td>
<td>Ophiucus (Kepler’s SN)</td>
<td>-2 (> Sirius) 6 kpc</td>
<td>Many Places</td>
</tr>
<tr>
<td>1987</td>
<td>LMC</td>
<td>+3 (Avg. Star) 50 kpc</td>
<td>Southern Hemisphere</td>
</tr>
</tbody>
</table>
Neutron Stars

• Neutron Star:
 – Left over (stellar endpoint) from supernova
 – A sea of neutrons
 – A giant atomic nucleus in the sky!!
• Mass = 1.4 to \(\sim 3 \, M_{\text{sun}} \)
• Size \(\sim 10 \, \text{km} \)
• Density \(\sim 3 \times 10^{14} \, \text{g/cm}^3 \)
• Intense magnetic fields, rapidly rotating

Perspective on the density?

• Neutron Star density \(\sim 3 \times 10^{14} \, \text{g/cm}^3 \)
• Steel has a density of 7.7 g/cm\(^3\)

1 cm cube of a Neutron Star

\[\downarrow \]

340 meter cube of steel!
The Discovery of Pulsars

• Jocelyn Bell - 1967
 – Graduate student at Cambridge, England
 – Discovered a pulsating radio signal coming from the sky!!
• LGMs? (Little Green Men)
• The object is a pulsar (pulsating star).
• Antony Hewish (her advisor) won a Nobel Prize.
Pulsar Radio Record from Arecibo.

Distribution of Pulsars.

Conservation of Angular Momentum

\[\text{mass} \times \text{speed} \times \text{radius} = \text{CONSTANT} \]

As the radius of a star goes down, the speed must go up.
Neutron star rotation

• Neutron stars initially spin very rapidly.
• Conservation of angular momentum!
 – mass x velocity x radius = constant
• Rotation period of Sun = 25 days
• Shrinking the Sun to 10 km would give a rotation period of much less than 1 second!

Pulses from space

• A short pulse is detected at regular intervals.
The Millisecond Pulsar

1937 + 214
14 Nov 82
1412 MHz

9216 μsec

1 microsecond = 0.001 milliseconds
1 millisecond = 0.001 seconds
1 μsec = 1 microsecond

Pulsar Characteristics

- Rotating Neutron Star--T. Gold (Cornell)
- Period 1 sec
- Size 20 km
- Density \(\sim 3 \times 10^{14} \text{ g/cm}^3 \)
- Mass \(\sim 1 \) to \(2 \text{ M}_{\text{sun}} \)
- Surface Temperature \(\sim 10^6 \text{ K} \)
- Surface Magnetic field \(\sim 10^{12} \) gauss
- Composition mostly neutrons
Binary Pulsar

The orbit precesses rapidly according to Einstein's General Theory of Relativity

General Relativity prediction \textit{CONFIRMED}.