Rossby Waves

\[\frac{\partial p}{\partial t} = -\frac{H_0}{\rho_0} \frac{\partial}{\partial z}, \quad H_0, \rho_0 \text{ constant} \]

thin layer, \(N^2 \text{ constant} \)

\[\frac{\partial}{\partial t} \left(\frac{\alpha^2}{N^2} \frac{\partial \Phi}{\partial z^2} + \frac{f_0^2}{N^2} \frac{\partial \Phi}{\partial z} \right) = 0 \]

\[\frac{\partial}{\partial t} \left(\frac{\alpha^2}{N^2} \frac{\partial \Phi}{\partial z^2} + \frac{f_0^2}{N^2} \frac{\partial \Phi}{\partial z} \right) = \frac{\partial}{\partial t} \left(\frac{\alpha^2}{N^2} \frac{\partial \Phi}{\partial z^2} \right) + \frac{f_0^2}{N^2} \frac{\partial \Phi}{\partial z} \]

\[u = -\frac{1}{f_0} \frac{\partial \Phi}{\partial y} \]

\[v = \frac{1}{f_0} \frac{\partial \Phi}{\partial x} \]

Linearize

Consider small amplitude perturbations about \(\Phi = 0 \), \(\frac{\partial \Phi}{\partial t} = 0 \), \(\frac{\partial \Phi}{\partial x} = 0 \).

\[\frac{\partial}{\partial t} \Phi + \frac{\partial}{\partial z} (f_0 \beta y + \frac{f_0^2}{N^2} \frac{\partial \Phi}{\partial z}) = 0 \]

\[= f_0 \beta y + \left(\frac{\alpha^2}{N^2} \frac{\partial^2 \Phi}{\partial z^2} \right) \Phi' \]

Drop squared terms \(\Phi' \)

\[\frac{\partial}{\partial t} \Phi + \frac{\partial}{\partial z} (f_0 \beta y + \frac{f_0^2}{N^2} \frac{\partial \Phi}{\partial z}) \Phi' = 0 \]

\[\frac{1}{f_0} \frac{\partial \Phi}{\partial y} + \left(\frac{\alpha^2}{N^2} \frac{\partial^2 \Phi}{\partial z^2} \right) \Phi' = 0 \]

\[\frac{\omega}{k} = -\frac{\beta}{k^2 + \frac{f_0^2}{N^2}} \]

Mode

\[e^{ikx + \omega t} \]

\[i f_0 \beta + \left(k^2 + k^2 + \frac{f_0^2}{N^2} \right)i \omega = 0 \]

Wave. No instabilities!
\(c \) instead of \(w \)

\[
\omega = kc, \quad \frac{\omega}{k} = C \quad \times \text{phase velocity}
\]

\(\rightarrow e^{i k(x-c t)+i y+imz} \)

\[
C = -\frac{\beta}{k^2+\ell^2+\frac{\omega^2}{N^2}}m^2
\]

Mean wind \(\bar{u} \) in \(x \) direction

1) \(\frac{\partial \Phi}{\partial y} = -f \bar{u} \quad \Rightarrow \quad \Phi = -f \bar{u} y + \text{const} \)

\(\Rightarrow \frac{\partial^2 \Phi}{\partial y^2} + f \beta y + \frac{f^2}{N^2} \frac{\partial^2 \Phi}{\partial z^2} = f \beta y \quad \text{as before} \)

2) \(\frac{D}{Dt} = \frac{\partial}{\partial t} + \bar{u} \frac{\partial}{\partial x} + \bar{v} \frac{\partial}{\partial y} \)

\(\Rightarrow \frac{\partial}{\partial t} + \bar{u} \frac{\partial}{\partial x} + \frac{u'}{\delta x} + \frac{v'}{\delta y} \uparrow \text{new term} \)

\(\therefore \text{Only change} \quad \frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t} + \bar{u} \frac{\partial}{\partial x} \)

\(-ikc \rightarrow -ikc + ik \bar{u} \)

\(\therefore (c \rightarrow c - \bar{u}) \)

New dispersion relation

\[
C = \bar{u} - \frac{\beta}{k^2+\ell^2+\frac{\omega^2}{N^2}}m^2
\]

Propagation \((-x)\) direction relative to mean flow.
Phase + group velocities

\[\omega = k \hat{u} - \frac{\beta k}{k^2 + k^2 + \frac{f_0^2}{N^2} \omega^2} = \omega_1 + \omega_2 \]

The direction is peculiar. First term \(\frac{d\omega_1}{dk} = \hat{u} = \text{mean flow drift} \)

Second term

Reflection from western boundary

Incident

Reflected

Frequency \(\omega \sim \frac{\Omega}{k} \sim \frac{\Omega L}{a} \sim \left(\frac{1}{a} \right) \Omega \) \text{ low frequency}

Speed \(\frac{\omega}{k} \sim \frac{\Omega L^2}{a} \sim \left(\frac{L}{a} \right)^2 \Omega a \) \text{ compare to } U

\[\frac{\omega}{U} \sim \frac{\Omega L}{U a} \sim \frac{L/a}{R_0} \sim 1 \]
Stationary wave

Important application

\[\begin{align*}
 \vec{u} & \rightarrow \\
 \text{surface with continents etc} \\
 k, \beta, \bar{u}, \rho, N, f_0 \text{ imposed by configuration, mean flow} \\
 \text{Stationary topography } \Rightarrow c = 0. \\
 m \text{ selected by dispersion relation} \\
 \frac{f_0^2}{N^2} m^2 = \frac{\beta}{\bar{u}} - (k^2 + \ell^2) \\
\end{align*} \]

Plot for various parameters on next page

\[\left(\frac{f_0}{HN} \right)^2 \left(H m \right)^2 = \frac{\beta}{\bar{u}} - \frac{1}{\ell^2} \left(\frac{\bar{k}^2 + \bar{\ell}^2}{\ell^2} \right) \]

\[\left(\frac{10^2}{10^4} \right) = 10^{-12} \text{ m}^{-2} \]
Eady problem in baroclinic instability

1. Scale the QG equations

\[
\begin{align*}
 x &= L \hat{x} \\
 y &= L \hat{y} \\
 p &= \frac{\rho_0}{\rho_0} \hat{p} \\
 t &= \frac{L}{U} t \\
 u &= U \hat{u} \\
 v &= V \hat{v} \\
 \Phi &= f_0 U L \hat{\Phi} \\
 T &= \frac{f_0 U L}{R} T
\end{align*}
\]

- Neglect variation of \(p \) as coefficient, for example:

\[
\frac{\partial \Phi}{\partial p} = -RT \implies \rho_0 \frac{\partial \Phi}{\partial \hat{p}} = -RT
\]

\[
\text{scaling} \quad \frac{\partial \hat{\Phi}}{\partial \hat{p}} = -\hat{T}
\]

- Switch to \(\hat{z} = 1 - \hat{\rho} \), use \(\hat{\omega} \) instead of \(\omega \), \(\hat{\omega} = \frac{D\hat{\Phi}}{D\hat{\rho}} \)

- Choose \(L = \frac{HN}{f_0} \), assume \(HN \) constant.

- Finally, drop hats!

\[
\begin{align*}
 u &= -\frac{\partial \Phi}{\partial y} \\
 v &= \frac{\partial \Phi}{\partial x} \\
 T &= \frac{\partial \hat{\Phi}}{\partial \hat{z}} \quad \left\{ \begin{array}{l}
 \frac{\partial u}{\partial \hat{z}} = -\frac{2T}{\hat{z}} \\
 \frac{\partial u}{\partial \hat{y}} = 0
 \end{array} \right. \\
 \frac{\partial \hat{\omega}}{\partial \hat{t}} &= 0, \quad \frac{\partial \hat{\omega}}{\partial \hat{y}} = 0
\end{align*}
\]

\[
\frac{D}{Dt} \left(\nabla^2 \Phi + \rho y + \frac{\partial^2 \Phi}{\partial z^2} \right) = 0
\]
2. Choose basic state + linearize

Instability of thermal wind is question

\[T = T + T' \]
\[u = \bar{u} + u' \]
\[\frac{\partial \bar{u}}{\partial z} = -\frac{2 \bar{T}}{\partial y} \]

Simple is goal \(\Rightarrow \) \[\bar{T} = -y \], \[\bar{u} = z \]

\[\bar{\Phi} = -yz \]
\[\bar{v} = \bar{w} = 0 \]

Finally, neglect \(\beta \). Then \[\frac{\partial}{\partial x} \bar{\Phi} + \beta y + \frac{\partial^2 \bar{\Phi}}{\partial z^2} = 0 \]

\[\left(\frac{\partial}{\partial t} + \bar{u} \frac{\partial}{\partial x} \right) \left(\bar{T}' + \frac{\partial^2 \Phi}{\partial z^2} \right) = 0 \]

\[\left(\frac{\partial}{\partial t} + \bar{u} \frac{\partial}{\partial x} \right) T' + \bar{v}' \frac{\partial \bar{T}}{\partial y} + \bar{w}' = 0 \]

\[\bar{T}' = \frac{\partial \bar{\Phi}'}{\partial z} \]
\[\bar{u}' = \frac{\partial \bar{\Phi}'}{\partial x} \]

B.C. \(\bar{w}' = 0 \) at \(z = 0, z = 1 \)

Formulation complete.
3. Linearized equations in terms of Φ'

$$\frac{\partial^2 \Phi'}{\partial t^2} + (\vec{u} + \vec{u}') \frac{\partial \Phi'}{\partial x} + (\vec{v} + \vec{v}') \frac{\partial \Phi'}{\partial y}$$

$\vec{u} = 2$, $\vec{v} = 0$

$$\nabla^2 \Phi' = 0 \quad (\phi' = -\Phi')$$

Using these, and recalling that $\nu' = \frac{\partial \Phi'}{\partial x}$,

$$\left(\frac{\partial^2}{\partial t^2} + 2 \frac{\partial}{\partial x} \right) \nabla^2 \Phi' = 0$$

$$\left(\frac{\partial^2}{\partial t^2} + 2 \frac{\partial}{\partial x} \right) \Phi' \left[\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} \right] = 0$$

at $z = 0, 1$

4. Solution.

Let $\Phi' = \Psi(z)e^{i(kx + ly - \omega t)}$

$$(\omega - k^2) (\frac{\partial^2}{\partial z^2} - k^2 \ell^2) \Psi = 0$$

$$\omega \frac{\partial \Psi}{\partial z} + k \Psi = 0 \quad \text{at} \quad z = 1$$

$$\omega \frac{\partial^2 \Psi}{\partial z^2} + k \Psi = 0 \quad \text{at} \quad z = 0$$

Let $\mu^2 = k^2 + \ell^2$. Then DE is solved by

$$\Psi = C \sinh \mu z + D \cosh \mu z$$

Substitute, find dispersion relation for ω from B.C.

$$\omega = \frac{k}{2} \left[1 \pm \left(1 + \frac{4}{\mu^2} - \frac{4}{\mu \ell \mu} \right)^{1/2} \right]$$

Also, the ratio of C to D is easily expressed from $z = 0$ B.C.

$$C \omega \mu + D \ell = 0 \Rightarrow \Psi = C \left[\sinh \mu z - \frac{\omega}{k} \cosh \mu z \right]$$
5. Growth rate and phase speed

a. For $\mu >> 1$, $(1 + \frac{4}{\mu} - \frac{4}{\mu^2})^2 \rightarrow (1)^2$ \(\omega\) is real

b. For $\mu << 1$, \[\text{tangly} = \mu = \frac{\mu^3}{3} + \frac{2}{15} \mu^5 + \ldots \]

\[\frac{4}{\mu} = \frac{1}{\mu^2} \left(1 - \frac{\mu^2}{1} - \frac{\mu^4}{5} + \ldots \right) \approx \frac{4}{\mu} \left[1 + \left(\frac{\mu^2}{3} - \frac{1}{5} \mu^4 + \frac{1}{3} \ldots \right) \right] \]

\[1 - \frac{1}{3\times 5x} \]

\[\frac{4}{\mu} \left(1 + \frac{\mu^2}{3} - \frac{\mu^4}{45} \ldots \right) \]

\[\frac{4}{\mu} \left(1 + \frac{1}{3} - \frac{\mu^2}{3} + \frac{\mu^4}{45} \ldots \right) = (\frac{4}{\mu}) \left(1 + \frac{1}{3} - \frac{\mu^2}{3} + \frac{\mu^4}{45} \ldots \right) \]

Thus ω has imaginary part for $\mu << 1$.

c. Since $(\frac{4}{\mu})^2$ has decreasing imaginary value as μ increases, away from zero, we conclude that for fixed k the max growth rate will occur for minium μ. \[\mu^2 = \frac{l^2 + \lambda^2}{\lambda^2} \Rightarrow l = 0 \text{ gives max growth rate.} \]

d. Note that the growing modes have $\frac{\omega}{k} = \frac{1}{2}$. They drift with the average velocity of \bar{u}.

e. Numerically:

\[\omega = \frac{4k}{\mu} \left(1 + \frac{1}{3} - \frac{\mu^2}{3} + \frac{\mu^4}{45} \ldots \right) \]

\[\omega \rightarrow \frac{4k}{\mu} \left(1 + \frac{1}{3} - \frac{\mu^2}{3} + \frac{\mu^4}{45} \ldots \right) \]

1.7 2.5 3

f. Dimensionally

\[\omega_{\text{max}} = \frac{U \omega}{l} = \frac{10^3 (0.31)}{10^8} \approx 1 \frac{1}{3 \times 10^5} \approx \frac{1}{3 \text{ day}} \]
6. Structure of solutions

\[\Phi = \Psi(z)e^{i(kx+ly-wt)} \quad \Psi = C \left[\sinh(kz) - \frac{w}{k} \cosh(kz) \right] \]

Consider \(l = 0 \), \(k \ll 1 \) \(\rightarrow \) \[C \left[\sinh(kz) - w\cosh(kz) \right] \]

\[\omega = \frac{k}{2} + \frac{k}{2} \frac{1}{\sqrt{3}} \left(1 - \frac{2}{5}k^2 \right) \]

Expand, find

\[\Phi' = kC \left[z - \frac{1}{2} + \frac{i}{2\sqrt{3}} \right] e^{i(kx-\omega t)} \]

\[T = \frac{\partial \Phi}{\partial x} = kC e^{i(kx-\omega t)} \]

\[\nu = \frac{\partial \Phi}{\partial x} = ik \Phi \]

\[w = \frac{1}{i} kC \epsilon (1-z) \left[\frac{1}{3} (z-\frac{1}{2}) + \frac{i}{2\sqrt{3}} \right] \]

Example: \(\Phi = |\Phi| e^{i(kx-\omega t + \phi(z))} \), \(|\Phi|^2 = (z-\frac{1}{2})^2 + \frac{1}{4}, \tan \Phi = -\frac{1}{2\sqrt{3}} \)

At \(t = 0 \), phase \(= 0 \) is \(kx = -\Phi \)

a. Rain before low \(\Phi \)
b. Max vorticity at \(\Phi_{\min} \) \((\gamma = \nabla^2 \Phi) \), convergence before \(\Phi_{\min} \)
(Convergence cancels advective tendency to straighten up \(\Phi \) lines)
c. \(T_{\max} \) before \(T_{\min} \) brings up warm air from south.
7. Energetics

Vorticity equation

\[
\frac{\partial}{\partial t}(w_x - w_y) - \frac{\partial \Phi}{\partial z} = 0
\]

\[
\frac{\partial}{\partial t} (\Phi_x + \Phi_y) = i(k_x - \omega)(-k^2 \Phi)
\]

\[
\Rightarrow \quad -i(k_x - \omega)k^2 \Phi^* = w_x^* \Phi^*
\]

\[
i(k_x - \omega)k^2 \Phi = w_z^* \Phi
\]

Add

\[
-ik^2(\omega - k_x) \Phi \Phi^* = w_z^* \Phi^* + w_z^* \Phi
\]

Recall that \(\frac{w_z^* \Phi^* + w_z^* \Phi}{4} = \text{Re}\{w_z \} \text{Re}\{\Phi\} \).

But first integrate in \(z \):

\[
-2k^2 \int \limits_0^l [\Phi \Phi^*] dz = \int \limits_0^l [w_x^* + w_z^* \Phi] dz - \int \limits_0^l (w_x^* + w_z^* \Phi) dz
\]

\[
= -\int \limits_0^l (w_x^* + w_z^* \Phi) dz
\]

\[
= \frac{1}{2} \ln \{w_z\} \int \limits_0^l \Phi \Phi^* dz = \int \limits_0^l \text{Re}\{w_x\} \text{Re}\{\Phi\} dz
\]

\[
= \frac{\partial}{\partial t} \langle k^2 \rangle = \langle \omega_T \rangle = \text{PE release.}
\]

Comment: Energy release is due to vortical heat flux.

Although not explained in detail, identified \(\cdots \)

8. Horizontal heat flux

\[
\int \limits_0^l \Phi \Phi^* dz = \frac{1}{4} \int \limits_0^l [(i \Phi_x \Phi_x^* + i \Phi_z \Phi_z^*)] dz
\]

\[
\int \limits_0^l \Phi \Phi^* dz = \frac{k^2 C^2}{2} \ln \{w_z\}
\]

\[
\Phi_x = \int \left[\sin(k_x x - \omega t) \cos(k_z z) \right] e^{-i(k_x - \omega)t} dz
\]
The vertical heat flux can be written in an analogous manner using
\[\int_0^1 \phi \phi' \, dz = \frac{e^2}{2} \left(\frac{k}{\tan k} - 1 \right). \] (from solution)

We find
\[\int_0^1 \bar{w} \bar{T} \, dz = \frac{k^2 c^2}{4} \left(\frac{k}{\tan k} - 1 \right) \ln \{w\} \]

Also, for reference
\[\int_0^1 \frac{\bar{w}^2}{\bar{T}} \, dz = \frac{e k^2}{2} \left(\frac{k}{\tan k} - 1 \right). \]

The angle of the heat flux vector is
\[\frac{\int_0^1 \bar{w} \bar{T} \, dz}{\int_0^1 \bar{w}^2 \, dz} = \frac{1}{2} \left(\frac{k}{\tan k} - 1 \right) \quad \text{most rapidly growing wave, } k \approx 1.7 \]

9. What is the slope of isentropes?

Dimensionally
\[\frac{\theta y}{\ell_p} = \frac{T_y}{\ell_p} - \frac{T_y g}{\ell_p} = \frac{U_f L T}{\ell_p} \]

\[= \frac{U_f}{N^2 H} = \frac{U_f}{L F} \frac{L f^2}{H N} \]

Nondimensionally
\[\text{Slope} \times \text{(slope)}_{\text{dim}} = \frac{U_f}{L F} \frac{L f^2}{H N} = R_0 \]

\[\frac{\theta y}{\ell_p} = \frac{U_f}{L F} \frac{L f^2}{H N} \]
Thus the comparison of slopes shows:

(Remember that w is really w^0, of order Ro)

Heat flux slope $= \frac{1}{2} \left(\frac{k}{\text{adv} k} - 1 \right) (Ro) \sim 0.37 \, Ro$

Isentrope slope $= Ro$

$\text{adv} \approx \text{heat flux}$

Warming regions \rightarrow

Cooling regions \rightarrow

Upward, yet parcels are moved to locations where they are warmer than the environment in spite of stable stratification.

This instability utilizes buoyancy and overcomes the Coriolis constraint against direct overturning.