Problem 1

{a}

For \(t \leq 0 \):
\[
\Psi(r, t) = \psi(r)e^{-iEt/\hbar}
\]
where
\[
E = \frac{1}{2}mc^2\alpha^2 \quad (\alpha \simeq 1/137)
\]
\[
\psi(r) = \frac{1}{\sqrt{\pi a_0^3}}e^{-r/a_0}
\]

Here we have used the ground state wavefunction for \(Z = 1 \). For \(t \geq 0 \), \(\Psi(r, t) \) can be written as a superposition of \(Z = 2 \) hydrogenic wavefunctions \(\psi_n(r) \):

\[
\Psi(r, t) = \sum_n c_n \psi_n(r)e^{-iE_nt/\hbar}
\]
where
\[
E_n = -\frac{1}{2}mc^2\alpha^2Z^2n^2
\]

In the “sudden” approximation, \(\Psi \) is continuous at \(t = 0 \), so eqns. (1) and (2) give

\[
\psi(r) = \sum_n c_n \psi_n(r)
\]

\[\Rightarrow \]
\[
c_n = \int \psi_n^*(r)\psi(r) \, d^3x
\]

In particular,

\[
c_1 = \int \psi_1^*(r)\psi(r) \, d^3x
\]

\[= \int \frac{1}{\sqrt{\pi}} \left(\frac{2}{a_0} \right)^{3/2} e^{-2r/a_0} \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}4\pi r^2 \, dr
\]

\[= \frac{2^{3/2}4}{a_0^3} \int_0^{\infty} e^{-3r/a_0}r^2 \, dr
\]

\[= \frac{2^{9/2}}{3^3}
\]

So the probability the \(^3\text{He}\) ion is in the ground state is

\[|c_1|^2 = 2^9/3^6 = 0.702\]

{b} Using the hint, the mean energy radiated is

\[\bar{E}_{\text{rad}} = |c_1|^2(E_1 - E_1) + |c_2|^2(E_2 - E_1) + |c_3|^2(E_3 - E_1) + \cdots
\]

Each term is the probability of the \(^3\text{He}\) winding up in an excited state times the energy it would radiate in returning to the ground state. (The first term is zero.) Rewrite this as

\[\bar{E}_{\text{rad}} = \sum_n |c_n|^2E_n - E_1 \sum_n |c_n|^2
\]

\[= \langle \Psi|H|\Psi \rangle_{t \geq 0} - E_1
\]

Here we have used the fact that second sum is unity. Now

\[H = \frac{p^2}{2m} - \frac{2e^2}{r}
\]

where the 2 is in the potential term since \(Z = 2 \) for \(t = 0^+ \). Since \(\Psi(t = 0^+) = \Psi(t = 0^-) = \psi(r) \), we get

\[\bar{E}_{\text{rad}} = \int \psi^*(r) \left(\frac{p^2}{2m} - \frac{2e^2}{r} \right) \psi(r) \, d^3x - E_1
\]

\[= \int \psi^*(r) \left(H_{t=0^-} - \frac{e^2}{r} \right) \psi(r) \, d^3x - E_1
\]
Now
\[\int \psi^*(r) H_{t=0} \psi(r) \, d^3x = \int \psi^*(r) E_1^{(Z=1)} \psi(r) \, d^3x \]
\[= E_1^{(Z=1)} \]
and
\[\int \psi^*(r) - e^2 \psi(r) \, d^3x = \frac{4e^2}{a_0} \int_0^\infty e^{-2r/a_0} \, dr \]
\[= -\frac{e^2}{a_0} \]
\[= -mc^2 \alpha^2 \quad (= 2E_1^{(Z=1)}) \]
So
\[\bar{\mathcal{E}}_{\text{rad}} = \frac{1}{2} mc^2 \alpha^2 - mc^2 \alpha^2 + 2mc^2 \alpha^2 \]
\[= \frac{1}{4} mc^2 \alpha^2 \quad (= 13.6 \text{ eV}) \]

Problem 2

The initial state is \(\Psi(x, t = 0) = \Psi(x, t = 0^-) \), the ground state of the harmonic oscillator. After \(t = 0 \), the state is a free particle, with general solution a superposition of plane waves (eqn. 2.100 in Griffiths):
\[\Psi(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty A(k) e^{ikx - \Omega t} \, dk \quad (3) \]
where \(\Omega = \hbar k^2 / 2m \). (We need to distinguish \(\Omega \) from the symbol \(\omega \) used to describe the oscillator.) So
\[\Psi(x, 0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty A(k) e^{ikx} \, dk \]

Inverting the Fourier transform:
\[A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty \Psi(x, 0) e^{-ikx} \, dx \]
\[= \frac{1}{\sqrt{2\pi}} \left(\frac{m\omega}{\hbar \pi} \right)^{1/4} \int_{-\infty}^\infty \exp \left(-\frac{m\omega}{2\hbar} x^2 \right) e^{-ikx} \, dx \]
\[= \frac{1}{\sqrt{2\pi}} \left(\frac{m\omega}{\hbar \pi} \right)^{1/4} \left(\frac{2\pi \hbar}{m\omega} \right)^{1/2} e^{-\hbar k^2 / 2m\omega}, \]
where we have used the integral in the hint. Substitute this in eqn. (3):
\[\Psi(x, t) = \frac{1}{2\pi} \left(\frac{m\omega}{\hbar \pi} \right)^{1/4} \left(\frac{2\pi \hbar}{m\omega} \right)^{1/2} \int_{-\infty}^\infty \exp \left(-\frac{\hbar k^2}{2m\omega} + ikx - \frac{ihk^2t}{2m} \right) \, dk \]
\[= \frac{1}{2\pi} \left(\frac{m\omega}{\hbar \pi} \right)^{1/4} \left(\frac{2\pi \hbar}{m\omega} \right)^{1/2} \int_{-\infty}^\infty \exp \left[-\frac{\hbar}{2m\omega}(1 + i\omega t)k^2 + ikx \right] \, dk \]
\[= \frac{1}{2\pi} \left(\frac{m\omega}{\hbar \pi} \right)^{1/4} \sqrt{\frac{\pi}{\hbar(1 + i\omega t)/2m\omega}} \exp \left[-\frac{m\omega x^2}{2\hbar(1 + i\omega t)} \right] \]
where we have used the integral in the hint again. Note that \(|\Psi(x, t)|^2 \) is a Gaussian centered on the origin whose width increases with time: the probability distribution spreads.
Problem 3

{a} By property (i),
\[|\Psi(t = 0)\rangle = c_0 |\psi_0\rangle + c_1 |\psi_1\rangle \]
Since an energy measurement yields \(E_0 \) and \(E_1 \) with equal probability, \(|c_0|^2 = |c_1|^2 = 1/2 \). The overall phase of a state is arbitrary, so let’s choose \(c_0 \) real:
\[c_0 = \frac{1}{\sqrt{2}}, \quad c_1 = \frac{1}{\sqrt{2}} e^{i\phi} \]
\[|\Psi(t = 0)\rangle = \frac{1}{\sqrt{2}} \left(|\psi_0\rangle + e^{i\phi} |\psi_1\rangle \right) \]

Now let’s use property (ii):
\[\langle x \rangle = \frac{1}{2} \left(\langle \psi_0 | + e^{-i\phi} \langle \psi_1 | \right) \hat{x} \left(|\psi_0\rangle + e^{i\phi} |\psi_1\rangle \right) \]
Substitute eqn. (??) for \(\hat{x} \). Now the matrix elements of \(\hat{x} \) between the same states give zero because \(\langle \psi_1 | \hat{a} | \psi_1 \rangle = 0 \) etc. So
\[\langle x \rangle = \frac{1}{2} \sqrt{\frac{\hbar}{2m\omega}} \left[e^{i\phi} \langle \psi_0 | \hat{a} + \hat{a}^\dagger | \psi_1 \rangle + e^{-i\phi} \langle \psi_1 | \hat{a} + \hat{a}^\dagger | \psi_0 \rangle \right) \]
Note that \(\langle \psi_1 | \hat{a} + \hat{a}^\dagger | \psi_0 \rangle = \langle \psi_0 | \hat{a}^\dagger + \hat{a} | \psi_1 \rangle \), so the second term is the complex conjugate of the first.
\[\langle x \rangle = \frac{1}{2} \sqrt{\frac{\hbar}{2m\omega}} \left[e^{i\phi} \langle \psi_0 | \hat{a} | \psi_1 \rangle + \langle \psi_0 | \hat{a}^\dagger | \psi_1 \rangle \right] + \text{c.c.} \]
Since \(\hat{a} | \psi_1 \rangle = | \psi_0 \rangle \) and \(\hat{a}^\dagger | \psi_1 \rangle = \sqrt{2} | \psi_2 \rangle \), only the first term is nonzero.
\[\langle x \rangle = \frac{1}{2} \sqrt{\frac{\hbar}{2m\omega}} \left[e^{i\phi} + \text{c.c.} \right] \]
\[= \sqrt{\frac{\hbar}{2m\omega}} \cos \phi \]
The largest positive value is for \(\phi = 0 \), so
\[|\Psi(t = 0)\rangle = \frac{1}{\sqrt{2}} \left(|\psi_0\rangle + |\psi_1\rangle \right) \]

{b} Now put in the time dependence:
\[|\Psi(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{-iE_0t/\hbar} |\psi_0\rangle + e^{-iE_1t/\hbar} |\psi_1\rangle \right) \]
\[= \frac{1}{\sqrt{2}} \left(e^{-i\omega t/2} |\psi_0\rangle + e^{-3i\omega t/2} |\psi_1\rangle \right) \]

{c}
\[\langle p \rangle = \langle \Psi(t)|\hat{p}|\Psi(t)\rangle = \frac{\sqrt{m\omega\hbar}}{2} (\hat{a}^\dagger - \hat{a}) |\Psi(t)\rangle \]
\[= \frac{\sqrt{m\omega\hbar}}{2} \left(e^{i\omega t/2} \langle \psi_0 | + e^{3i\omega t/2} \langle \psi_1 | \right) (\hat{a}^\dagger - \hat{a}) \left(e^{-i\omega t/2} \langle \psi_0 | + e^{-3i\omega t/2} \langle \psi_1 | \right) \]
The only terms that contribute are \(\langle \psi_1 | \hat{a}^\dagger | \psi_0 \rangle = \langle \psi_1 | \psi_1 \rangle = 1 \) and \(\langle \psi_0 | \hat{a} | \psi_1 \rangle = \langle \psi_0 | \psi_0 \rangle = 1 \), so
\[\langle p \rangle = \frac{\sqrt{m\omega\hbar}}{2} \left(e^{i\omega t/2} e^{-3i\omega t/2} + e^{3i\omega t/2} e^{-i\omega t/2} \right) \]
\[= -\sqrt{\frac{m\omega\hbar}{2}} \sin \omega t \]
The largest positive value occurs when \(\sin \omega t = -1 \). The smallest \(t \) for which this is true is

\[
\omega T = \frac{3\pi}{2} \quad \text{and} \quad T = \frac{3\pi}{2\omega}
\]

Problem 4

In classical mechanics, the motion of a particle with energy \(E \) in a potential \(V(r) \) is constrained by the equation \(E = T + V \). The maximum distance attainable from the center of an attractive potential is a turning point of the motion, found by setting \(T = 0 \), so that all the energy is potential energy. Any distance greater than this is the classically forbidden region.

\[
E = V |_{r_{\text{max}}} \implies -\frac{1}{2}mc^2 \alpha^2 = -\frac{e^2}{r_{\text{max}}}
\]

Here we want to replace the expression for the ground-state energy of hydrogen with the equivalent expression \(e^2/2a_0 \), so

\[
r_{\text{max}} = 2a_0 \\
\text{Prob}(r > r_{\text{max}}) = \int_{2a_0}^{\infty} R_{10}^2(rr) r^2 dr \\
= \frac{4}{a_0^2} \int_{2a_0}^{\infty} e^{-2r/a_0} r^2 dr \\
= \frac{1}{2} \int_4^{\infty} e^{-y^2} dy \quad (y = 2r/a_0) \\
= \frac{1}{2} e^{-y} \bigg[-y^2 - 2y - 2 \bigg] \bigg|_4^{\infty} = 13/e^4 = 0.238
\]

Problem 5

\{a\}

\[
S^2 = (s_1 + s_2)^2 = s_1^2 + s_2^2 + 2s_1 \cdot s_2
\]

so \(H = \frac{1}{2}c^2(S^2 - s_1^2 - s_2^2) \)

Now the states \(\hat{p}_x sm \) are really states \(|s_1 s_2 s m\rangle \) with \(s_1 \) and \(s_2 \) fixed (in this case, \(s_1 = s_2 = \frac{1}{2} \)). So

\[
H \hat{p}_x sm = \frac{1}{2}ch^2 \left[s(s + 1) - \frac{3}{4} - \frac{3}{4} \right] \hat{p}_x sm
\]

For \(\hat{p}_x 00 \), we get

\[
E_0 = \frac{1}{2}ch^2 \left[0 - \frac{3}{2} \right] = -\frac{3}{4}ch^2
\]

For \(\hat{p}_x 1m \), we get

\[
E_1 = \frac{1}{2}ch^2 \left[1 \cdot 2 - \frac{3}{2} \right] = -\frac{1}{4}ch^2
\]

(triply degenerate)

\{b\} In the \(\hat{p}_x m_1 m_2 \) basis, we have

\[
s_1 \cdot s_2 = s_{1x}s_{2x} + s_{1y}s_{2y} + s_{1z}s_{2z} \\
= \frac{1}{4}(s_{1+} + s_{1-})(s_{2+} + s_{2-}) - \frac{1}{4}(s_{1+} - s_{1-})(s_{2+} - s_{2-}) + s_{1z}s_{2z} \\
= \frac{1}{2}s_{1+}s_{2-} + \frac{1}{2}s_{1-}s_{2+} + s_{1z}s_{2z}
\]

Recall that

\[
s_+ |\frac{1}{2}\rangle = 0, \quad s_+ |\frac{3}{2}\rangle = \hbar |\frac{1}{2}\rangle, \quad s_- |\frac{1}{2}\rangle = \hbar |\frac{1}{2}\rangle, \quad s_- |\frac{3}{2}\rangle = 0
\]

So

\[
H \hat{p}_x \frac{1}{2} \frac{1}{2} = \frac{1}{4}ch^2 \hat{p}_x \frac{1}{2} \frac{1}{2} \\
H \hat{p}_x \frac{1}{2} - \frac{1}{2} = \frac{1}{2}ch^2 \hat{p}_x \frac{1}{2} - \frac{1}{2} - \frac{1}{4}ch^2 \hat{p}_x \frac{1}{2} - \frac{1}{2} \\
H \hat{p}_x - \frac{1}{2} \frac{1}{2} = \frac{1}{2}ch^2 \hat{p}_x - \frac{1}{2} - \frac{1}{4}ch^2 \hat{p}_x - \frac{1}{2} \\
H \hat{p}_x - \frac{1}{2} - \frac{1}{2} = \frac{1}{4}ch^2 \hat{p}_x - \frac{1}{2} - \frac{1}{2}
\]
So for example $\langle \frac{1}{2} \left| \frac{1}{2} \right| H \hat{p}_x \frac{1}{2} \rangle = \frac{1}{4} \hbar^2$ and the matrix representation of H in this basis is

$$
H = \frac{1}{4} \hbar^2 \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

The eigenvalues of this are the energy levels (solutions of $H\psi = E\psi$):

$$\det \begin{bmatrix}
1 - E & 0 & 0 & 0 \\
0 & -1 - E & 2 & 0 \\
0 & 2 & -1 - E & 0 \\
0 & 0 & 0 & 1 - E
\end{bmatrix} = 0$$

gives $E = 1$ twice and

$$
\begin{bmatrix}
-1 - E \\
2 \\
-1 - E
\end{bmatrix} = 0, \quad (1 + E)^2 = 4, \quad E = -3 \quad \text{or} \quad 1
$$

Putting back the factor of $\frac{1}{4} \hbar^2$, we have the same answer as part (a):

$$
E = -\frac{1}{4} \hbar^2 \quad \text{or} \quad \frac{1}{4} \hbar^2 \quad \text{(3 times)}
$$

{c} Write the general solution as a superposition of stationary states:

$$
|\Psi(t)\rangle = \sum_n c_n |\psi_n\rangle e^{-iE_n t/H}
$$

$$
= c_1 \hat{p}_x 00 e^{-iE_0 t/H} + c_2 \hat{p}_x 11 e^{-iE_1 t/H} + c_3 \hat{p}_x 10 e^{-iE_1 t/H} + c_4 \hat{p}_x 01 e^{-iE_0 t/H}
$$

{d} The easiest way to do this is to rewrite the solution (c) in terms of the states $\hat{p}_x \frac{1}{2} \frac{1}{2}$ etc. using

$$
\hat{p}_x 11 = \hat{p}_x \frac{1}{2} \frac{1}{2}
$$

$$
\hat{p}_x 00 = \frac{1}{\sqrt{2}} \left(\hat{p}_x \frac{1}{2} \frac{1}{2} + \hat{p}_x \frac{1}{2} \frac{1}{2} \right)
$$

(remember that we are being lazy here: $\hat{p}_x 11$ really means $\frac{1}{2} \frac{1}{2} 1 1$, but since the first two quantum numbers $s_1 = s_2 = \frac{1}{2}$ stay fixed, we’re omitting them. Similarly, $\hat{p}_x \frac{1}{2} \frac{1}{2}$ really means the product state $\hat{p}_x \frac{1}{2} \frac{1}{2} \hat{p}_x \frac{1}{2} \frac{1}{2}$ where we drop the first quantum number in each ket.) So solution (c) becomes

$$
|\Psi(t)\rangle = A \left(\hat{p}_x \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \right) e^{-iE_0 t/H} + \left[B \hat{p}_x \frac{1}{2} \frac{1}{2} + C \left(\hat{p}_x \frac{1}{2} \frac{1}{2} + \hat{p}_x \frac{1}{2} \frac{1}{2} \right) + D \hat{p}_x \frac{1}{2} \frac{1}{2} \right] e^{-iE_1 t/H}
$$

where we have redefined some constants to absorb the factor of $1/\sqrt{2}$.

Now at $t = 0$,

$$
|\Psi(0)\rangle = \hat{p}_x \frac{1}{2} \frac{1}{2} \quad \implies \quad B = D = 0, \quad A + C = 1, \quad -A + C = 0
$$

Thus $A = C = \frac{1}{2}$ and

$$
|\Psi(t)\rangle = \frac{1}{2} \left(\hat{p}_x \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \right) e^{-iE_0 t/H} + \frac{1}{2} \left(\hat{p}_x \frac{1}{2} \frac{1}{2} + \hat{p}_x \frac{1}{2} \frac{1}{2} \right) e^{-iE_1 t/H}
$$

{e}

$$
P(\frac{1}{2}, \frac{1}{2}) = |\langle \frac{1}{2} \frac{1}{2} | \Psi(t)\rangle|^2 = 0
$$

$$
P(\frac{1}{2}, -\frac{1}{2}) = |\langle \frac{1}{2} -\frac{1}{2} | \Psi(t)\rangle|^2
$$

$$
= \left| \frac{1}{2} \left(e^{-iE_0 t/H} + e^{-iE_1 t/H} \right) \right|^2
$$

$$
= \frac{1}{4} \left| e^{3i\hbar t/4} + e^{-i\hbar t/4} \right|^2
$$

$$
= \frac{1}{4} \left| e^{i\hbar t/4} - e^{-i\hbar t/4} \right|^2
$$

$$
= \cos^2 \left(\frac{\chi t}{2} \right)
$$
Problem 6
The first-order correction to the ground state energy is
\[\Delta E = \langle 1\ 0\ 0 | H' | 1\ 0\ 0 \rangle \] (4)
where |1 0 0⟩ is the ground state ket. To find \(H' \), we need to first find the potential inside and outside a uniform spherical charge distribution of radius \(R \). The perturbation \(H' \) is the difference between this potential and the Coulomb potential used when the proton is treated as a point particle. (More precisely, the difference in the potential energies.) The quickest way to find the potential is to use Gauss’s Law to get the \(\mathbf{E} \) field and then integrate the field to get the potential. Gauss’s Law is
\[
\oint_S \mathbf{E} \cdot d\mathbf{S} = 4\pi \int_V \rho \, d^3x
\]
In spherical symmetry the \(\mathbf{E} \) field is radial and we choose the Gaussian surface to be a sphere of radius \(r \). This gives
\[
4\pi r^2 E(r) = 4\pi \int_0^r \rho(r) \, d^3x \quad \Rightarrow \quad E(r) = \frac{q(r)}{r^2}
\]
where \(q(r) \) is the charge enclosed by a sphere of radius \(r \). Since
\[
q(r) = \begin{cases}
 e, & r > R \\
 e \left(\frac{r}{R} \right)^3, & r < R
\end{cases}
\]
we get
\[
E(r) = \begin{cases}
 \frac{e}{r^2}, & r > R \\
 e \frac{r}{R^3}, & r < R
\end{cases}
\]
(Note that \(e \) is positive. The charge on an electron is \(-e \) and on a proton is \(+e \).) The potential energy of the electron is
\[
V(r) = (-e) \left(-\int_{\infty}^{r} E(r') \, dr' \right)
\]
For \(r < R \) we get
\[
V(r) = e^2 \int_{\infty}^{R} \frac{dr'}{r'^2} + e^2 \int_{R}^{r} \frac{r'}{R^3} \, dr' \\
= e^2 \left(-\frac{1}{R} + \frac{1}{2} \frac{r^2}{R^3} - \frac{1}{2} \frac{1}{R} \right)
\]
while for \(r > R \) we have \(V(r) = -e^2/r \). So
\[
H' = V(r) - \left(-\frac{e^2}{r} \right) \\
= \begin{cases}
 0, & r > R \\
 e^2 \left(\frac{1}{r} + \frac{r^2}{2R^3} - \frac{3}{2R} \right), & r < R
\end{cases}
\]
Eqn. (4) gives
\[
\Delta E = \int_0^R 4\pi r^2 \, dr \left(\frac{1}{\pi a_0^3} e^{-2r/a_0} \right) e^2 \left(\frac{1}{r} + \frac{r^2}{2R^3} - \frac{3}{2R} \right)
\]
Since \(R \ll a_0, r \ll a_0 \) throughout the region of integration. So we can set the exponential term to unity. This gives
\[
\Delta E = \frac{4e^2}{a_0^3} \int_0^R dr \left(r + \frac{r^4}{2R^3} - \frac{3r^2}{2R} \right) \\
= \frac{2}{5} \frac{e^2 R^2}{a_0^3}
\]
Since $e^2/2a_0 = 13.6 \text{ eV}$ and $R/a_0 = 10^{-13} \text{ cm}/0.529 \times 10^{-8} \text{ cm}$, we get

$$\Delta E = 3.9 \times 10^{-9} \text{ eV}$$

Note that since this is much smaller than the distance between the ground state energy and the first excited state, perturbation theory is a good approximation. (In fact, ΔE is much smaller even than the hyperfine splitting of the ground state, as we will see.)

Problem 7
The unperturbed Hamiltonian of a 3-d rotator is

$$H_0 = \frac{L^2}{2I}$$

where I is the moment of inertia. Adding the perturbation

$$H' = -E \cdot d = -\mathcal{E} d \cos \theta$$

gives the full Hamiltonian $H = H_0 + H'$. The unperturbed energies satisfy

$$\frac{L^2}{2I} \psi = E \psi$$

The energy levels and eigenfunctions are

$$E_l = \frac{l(l + 1)}{2I} \hbar^2, \quad \langle r|\psi_{lm} \rangle = Y_{lm}(\theta, \phi)$$

(Note that there is no radial dependence.) Although each state is $(2l + 1)$-fold degenerate, since the perturbation doesn’t depend on ϕ, it couples only the $m = 0$ states (as we’ll see explicitly below.) So we can use non-degenerate perturbation theory.

To second order, the ground state energy is

$$E = E_0 + \langle \psi_{00} | H' | \psi_{00} \rangle + \sum_{l,m} \frac{|\langle \psi_{lm} | H' | \psi_{00} \rangle|^2}{E_0 - E_l}$$

Note that we can write H' in terms of spherical harmonics as

$$H' = -\mathcal{E} d \sqrt{\frac{4\pi}{3}} Y_{10}$$

So the first-order correction is

$$\langle \psi_{00} | H' | \psi_{00} \rangle = -\mathcal{E} d \sqrt{\frac{4\pi}{3}} \int Y_{00}^* Y_{10} Y_{00} \, d\Omega \propto \int Y_{00}^* Y_{10} \, d\Omega = 0$$

Here $d\Omega = \sin \theta \, d\theta \, d\phi$ and we have used the orthogonality of the Y_{lm}’s. (Note that $Y_{00} = 1/\sqrt{4\pi}$ is a constant.)

The leading order correction to the ground state energy is therefore second-order. The matrix elements are

$$\langle \psi_{lm} | H' | \psi_{00} \rangle = -\mathcal{E} d \sqrt{\frac{4\pi}{3}} \int Y_{lm}^* Y_{10} Y_{00} \, d\Omega$$

$$= -\mathcal{E} d \sqrt{\frac{1}{3}} \delta_{l1} \delta_{m0}$$

where we have used orthogonality again. So

$$\Delta E = \sum_{l,m} \left| \frac{\langle \psi_{lm} | H' | \psi_{00} \rangle}{E_0 - E_l} \right|^2 = \frac{\mathcal{E}^2 d^2}{3} \frac{1}{0 - \hbar^2/I} = \frac{\mathcal{E}^2 d^2 I}{3\hbar^2}$$

Second-order perturbation theory is a good approximation provided

$$|\Delta E| \ll |E_0 - E_1| \quad \Rightarrow \quad \left| \frac{\mathcal{E}^2 d^2 I}{3\hbar^2} \right| \ll \frac{\hbar^2}{I} \quad \Rightarrow \quad \mathcal{E} \ll \frac{\hbar^2}{dI}$$

where we have dropped the factor of $1/3$.

Problem 8
The interaction energy of a charge $-e$ in an external potential ϕ is $H' = -e\phi$. Here the electric field is

$$E = \mathcal{E}e_z = -\nabla\phi \quad \Rightarrow \quad \phi = -\mathcal{E}z$$

(Adding a constant doesn’t change the physics.) So

$$H' = e\mathcal{E}z = e\mathcal{E}r\cos\theta$$

The first-order correction to the ground state energy is

$$\Delta E = \langle 1\ 0\ 0 | e\mathcal{E}r\cos\theta | 1\ 0\ 0 \rangle$$

There are several ways to see this is zero:

1. It is E times the expectation value of a dipole moment in a state of definite parity, which we showed in class is zero using a parity argument.
2. It involves the integral of $Y_{00}^* Y_{10} Y_{00}$. Treat the last factor, Y_{00}, as a constant. Then the first two terms give zero by orthogonality.
3. Do the θ integral explicitly. (Needless to say, this is not the recommended method.)

The second-order correction to the ground-state energy is

$$\Delta E = \sum_{l,m}^\infty \frac{|\langle n\ l\ m|H'|1\ 0\ 0 \rangle|^2}{E_1 - E_n}$$

(5)

The matrix element is

$$\langle n\ l\ m|H'|1\ 0\ 0 \rangle = \langle n\ l\ m|e\mathcal{E}r\cos\theta|1\ 0\ 0 \rangle$$

$$= e\mathcal{E} \frac{4\pi}{3} \langle n\ l\ m|rY_{10}|1\ 0\ 0 \rangle$$

$$= e\mathcal{E} \frac{4\pi}{3} \int Y_{lm}^* Y_{10}\ d\Omega \int_0^\infty R_{nl} R_{10} r^3\ dr$$

$$= \delta_{l1} \delta_{m0} \frac{e\mathcal{E}}{\sqrt{3}} \int_0^\infty R_{nl} R_{10} r^3\ dr$$

Using the Kronecker deltas to do the l and m sums in (5) gives

$$\Delta E = e^2\mathcal{E}^2 \sum_{n=2}^\infty \frac{|z_{n1}|^2}{E_1 - E_n} \quad \text{with} \quad z_{n1} = \frac{1}{\sqrt{3}} \int_0^\infty R_{nl} R_{10} r^3\ dr$$

$$\text{and} \quad \alpha = \frac{2\Delta E}{\mathcal{E}^2} = \frac{2e^2 \sum_{n=2}^\infty \frac{|z_{n1}|^2}{E_1 - E_n}}{E_1 - E_n}$$

In a matrix element like z_{n1}, the states are normalized and so their dimensions drop out of the integral. The dimensions are just the dimensions of z, and the scale is set by the size of the atom: $z_{n1} \sim a_0$. The energies scale as $E_1 - E_n \sim E_{1} \sim -e^2/a_0$. (This is a better expression to use here than the equivalent $-m\alpha^2$.) Thus

$$\alpha \sim e^2 \frac{a_0^2}{-e^2/a_0} \sim -a_0^3$$

Problem 9
The perturbation Hamiltonian is

$$H' = e\mathcal{E}z = e\mathcal{E}r\cos\theta$$

We need to find the eigenvalues of the matrix of H' in the basis of $n = 2$ degenerate eigenstates. Label the states as

$$|1\rangle = |2\ 0\ 0\rangle, \quad |2\rangle = |2\ 1\ 1\rangle, \quad |3\rangle = |2\ 1\ 0\rangle, \quad |4\rangle = |2\ 1\ -1\rangle$$
where the 3 quantum numbers are \(n, l, m \). We want to find \(H'_{ij} = \langle i | H' | j \rangle \). We use symmetry arguments to determine which of these matrix elements must be zero.

Consider the parity operator \(P \). This is not a symmetry operator for \(H' \), but \(H' \) has a definite transformation property:

\[
P | n \, l \, m \rangle = (-1)^l | n \, l \, m \rangle \quad \text{(from the } Y_{lm} \text{)}
\]

\[
PH'P = -H' \quad \text{(from the } z \text{)}
\]

So

\[
\langle n \, l \, m | H' | n' \, l' \, m' \rangle = -\langle n \, l \, m | (PH'P) | n' \, l' \, m' \rangle = -\left(\langle n \, l \, m | P | H' (P | n' \, l' \, m') \rangle \right) = (-1)^{l+l'+1} \langle n \, l \, m | H' | n' \, l' \, m' \rangle
\]

Thus

\[
\langle n \, l \, m | H' | n' \, l' \, m' \rangle = 0 \quad \text{if } (l + l') \text{ is even.}
\]

Another way of seeing this is from the explicit integral for the matrix element. Since \(\cos \theta \propto Y_{10} \), the angular part of the integral involves

\[
\int Y_{l'm'}^* Y_{lm} \, d\Omega
\]

Under an inversion, each \(Y_{lm} \) gives a factor of \((-1)^l\), giving a total of \((-1)^{l+l'+1}\) as before. So the possible nonzero matrix elements are \{ \(H'_{12}, H'_{13}, H'_{14} \) \} and their Hermitian conjugates.

There is also a selection rule from the \(\phi \)-integral, which involves

\[
\int_0^{2\pi} e^{i(-m+m')\phi} \, d\phi = 0 \quad \text{unless } m = m'
\]

Another way to see this is from the symmetry of the perturbation under rotations about the \(z \)-axis. The generator of these rotations is \(J_z \), and the symmetry is expressed by \([H', J_z] = 0\). (This is just the statement that \([z, J_z] = 0\), one of the equations saying that \((x, y, z)\) form the components of a vector operator.) Now

\[
\langle n \, l \, m | H' J_z | n' \, l' \, m' \rangle = m' \hbar \langle n \, l \, m | H' | n' \, l' \, m' \rangle
\]

Using the commutator relation, this is also equal to

\[
\langle n \, l \, m | J_z H' | n' \, l' \, m' \rangle = m \hbar \langle n \, l \, m | H' | n' \, l' \, m' \rangle
\]

So the matrix element is nonzero only if \(m = m' \). This reduces the set of nonzero matrix elements to just \(H'_{13} = \langle 2 \, 0 \, 0 \langle H' | 2 \, 1 \, 0 \rangle \). So we have only one integral to compute explicitly:

\[
H'_{13} = \varepsilon E \int \frac{4\pi}{3} Y_{10}^* Y_{10} \, d\Omega \int_0^\infty R_{20} r R_{21} r^2 \, dr
\]

\[
= \varepsilon E \sqrt{\frac{4\pi}{3}} \frac{1}{\sqrt{4\pi}} \int Y_{10}^* Y_{10} \, d\Omega \int_0^\infty \frac{1}{\sqrt{4\alpha_0^2}} \left[\frac{r}{a} - \frac{1}{2} \left(\frac{r}{a_0} \right)^2 \right] e^{-r/a_0} r^3 \, dr
\]

Here we have used the fact that \(Y_{10} \) is real so we can easily see that the angular integral is unity. Put \(x = r/a_0 \) in the radial integral to get

\[
H'_{13} = \frac{1}{12} \varepsilon E a_0 \int_0^\infty \left(x^4 - \frac{x^5}{2} \right) e^{-x} dx = \frac{1}{12} \varepsilon E a_0 \left(4! - \frac{5!}{2} \right) = -3\varepsilon E a_0
\]

So finally

\[
H' = \begin{pmatrix}
0 & 0 & -3\varepsilon E a_0 & 0 \\
0 & 0 & 0 & 0 \\
-3\varepsilon E a_0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Diagonalizing the matrix yields the eigenvalues

\[
\Delta E = 0, 0, \pm 3\varepsilon E a_0
\]

Thus in the presence of the external electric field, the states \(|2 \, 1 \, 1 \rangle \) and \(|2 \, 1 \, -1 \rangle \) receive no first-order correction to their energies. The two linear combinations of \(|2 \, 0 \, 0 \rangle \) and \(|2 \, 1 \, 0 \rangle \) that are the “good” eigenstates are split, one with a positive correction and one with a negative correction.
The way to understand these results without all the formalism is as follows: The $2s$ state has even parity ($l = 0$), the $2p$ states have odd parity ($l = 1$). The perturbation couples states of different parity, since it’s a polar vector. So only matrix elements of $2s$ with $2p$ are nonzero. In addition, rotational symmetry about the z-axis means angular momentum about that axis is conserved. So the m value of a state isn’t changed by the perturbation—only states with the same m are coupled.