Department of Astronomy Center for Radiophysics & Space Research

Mars Exploration Rovers - MER

NASA's twin robot geologists, the Mars Exploration Rovers Spirit and Opportunity, launched toward Mars on June 10 and July 7, 2003, in search of answers about the history of water on Mars. They landed on Mars January 3 and January 24 PST, 2004 (January 4 and January 25 UTC, 2004).

The Mars Exploration Rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet.  Professor Stephen Squyres, the scientific Principal Investigator, and the Cornell MER Team have analyzed the extensive data returned from the rovers and have provided new research insight in the composition of Mars and the possibility of water on the red planet.

Primary among the mission's scientific goals is to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars. The spacecraft are targeted to sites on opposite sides of Mars that appear to have been affected by liquid water in the past. The landing sites are at Gusev Crater, a possible former lake in a giant impact crater, and Meridiani Planum, where mineral deposits (hematite) suggest Mars had a wet past.

After the airbag-protected landing craft settled onto the surface and opened, the rovers rolled out to take panoramic images. These images give scientists the information they need to select promising geological targets that tell part of the story of water in Mars' past. Then, the rovers drive to those locations to perform on-site scientific investigations.

These are the primary science instruments carried by the rovers:

  • Panoramic Camera (Pancam): for determining the mineralogy, texture, and structure of the local terrain.

  • Miniature Thermal Emission Spectrometer (Mini-TES): for identifying promising rocks and soils for closer examination and for determining the processes that formed Martian rocks. The instrument is designed to look skyward to provide temperature profiles of the Martian atmosphere.

  • Mössbauer Spectrometer (MB): for close-up investigations of the mineralogy of iron-bearing rocks and soils.

  • Alpha Particle X-Ray Spectrometer (APXS): for close-up analysis of the abundances of elements that make up rocks and soils.

  • Magnets: for collecting magnetic dust particles. The Mössbauer Spectrometer and the Alpha Particle X-ray Spectrometer are designed to analyze the particles collected and help determine the ratio of magnetic particles to non-magnetic particles. They can also analyze the composition of magnetic minerals in airborne dust and rocks that have been ground by the Rock Abrasion Tool.

  • Microscopic Imager (MI): for obtaining close-up, high-resolution images of rocks and soils.

  • Rock Abrasion Tool (RAT): for removing dusty and weathered rock surfaces and exposing fresh material for examination by instruments onboard.

Mars Exploration Rovers Researchers: Squyres, Sullivan

Image Gallery
Rover
Victoria Crater
Victoria Crater
9/11 Memorial
Blueberries on Mars?
Martian Blueberries
Rover tire marks on Mars
Mars Horizon
Exploration of Santa Maria Crater
Opportunity at Santa Maria Crater
Santa Maria Crater
Mars Rocks
Volcanic Boulders
Opportunity Observation of Mars Rock