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1. Thoughts on Space Travel for Spring 2010 Orion: I. Wasserman, 3/31/2010

To derive the relativistic rocket equation, consider what happens when a mass ∆m is

ejected in the spaceship’s rest frame at a speed v0. The changes in energy and momentum

resulting from the ejection are ∆E0 = γ0∆m and ∆P0 = ∆E0v0. If the rocket moves at

speed v relative to Earth, then in the Earth frame

∆E = γ(∆E0 + v∆P0) = γ∆E0(1 + vv0) ∆P = γ(∆P0 + v∆E0) = γ∆E0(v + v0) . (1)

Since P = Ev is the rocket momentum relative to Earth, and E = γm in the same frame

when the rocket rest mass is m, we get

∆P = v∆E + E∆v = vγ(∆E0 + v∆P0) + mγ∆v = γ(∆P0 + v∆E0) (2)

and therefore
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because the rocket rest mass changes by −∆E0 to lowest order; integrating implies

1 + v

1− v
=

[
m(0)

m

]2v0

⇒ m(0)

m
=

(
1 + v

1− v

)1/2v0

(4)

where m is the mass of the rocket when it has attained speed v and m(0) is its mass at zero

speed. Note that this solution does not depend on the history of mass ejection, but only on

the total mass ejected.

Now consider a rocket that accelerates uniformly. This means that the acceleration is

fixed in the rocket rest frame; let the acceleration be a. Then in the Earth frame we have

d(γv)

dτ
= γa (5)

and the solution to this equation is
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a
. (6)
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Now suppose we wish to go a total distance D in the Earth frame going out halfway at a

uniform accleration a and then the rest of the way at uniform acceleration −a so that we

arrive at our destination with zero speed. Then we go halfway in a proper time

aτ1
2

= cosh−1(1 + aD/2) (7)

and the maximum speed attained is vmax where

vmax =

√
aD(1 + aD/4)

1 + aD/2

γmax = 1 + aD/2 . (8)

The entire trip requires a proper time

2aτ1
2

= 2 cosh−1(1 + aD/2) , (9)

and using the relativistic rocket equation we see that the trip requires a ratio of final mass

m to initial mass m(0) given by
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; (10)

this can be inverted to find

aD = [m/m(0)]v0/2 + [m(0)/m]v0/2 − 2 = {[m/m(0)]v0/4 − [m(0)/m]v0/4}2, (11)

which gives the distance that can be travelled in terms of the ratio of the masses, a useful

relationship if limitations on the ratio of fuel to spaceship mass is invoked. The implied

distance increases at m(0)/m > 1.

Now a comfortable journey would be at an acceleration that equals the acceleration of

gravity on Earth, g = 980 cm s−2 ≈ 1.03c yr−1 ≈ c/0.97 yr. Then, for example, a trip to α

Cen, which is at D = 4.5 yr, has gD/2 ≈ 2.25× 1.03 ≈ 2.32. During the trip, the astronauts

age 3.62 years, whereas their counterparts on Earth age
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or about 6.14 years. The maximum speed attained in this journey is vmax ≈ 0.954, and the

mean speed is 〈v〉 = 4.5/6.14 ≈ 0.733. Note that the astronauts age less than 4.5 years, a

reflection of their relativistic motion and time dilation.

The amount of fuel consumed during the journey depends critically on the value of v0.

The largest value of v0 is one, and that is for a rocket that annihilates its fuel completely.
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In this case, m(0)/m ≈ 42. But this is a lower bound on this ratio. For more realistic

rocket fuel, the requirements are more stringent. Nuclear energy derived from H fusion,

a more practical source of fuel, would have v0 ≈ 0.122, and in this case we would have

m(0)/m ≈ 2× 1013.

For nuclear fuel, a practical limitation on the maximum distance that can be travelled

may be derived from assuming that at most all of the H in the solar system could be

packed along as fuel. That amounts to something like 1030 kg of H. Even with the most

Spartan design, it seems hardly possible for a spaceship to weigh less than a ton, or about

1000 kg. Thus, a practical limitation would be m(0)/m . 1027. For such a spacecraft,

the distance travelled cannot exceed about 41.06/(a/g) light years! Longer trips can be

made at lower accelerations, since the distance travelled is inversely proportional to the

acceleration given m(0)/m, but the biological effects of protracted living at sub-g gravity

may be prohibitive. The astronauts would age about 7.36/(a/g) years during this longest-

possible nuclear powered journey.

The only practical hope for long trips at a = g is for the astronauts to scavenge along

the way.


