Learning How To Count: Poisson Processes

(Lecture 3)

Tom Loredo

Dept. of Astronomy, Cornell University
Motivation/Terminology

We consider processes that produces discrete, isolated events in some interval, possibly multidimensional. We will make inferences about the event rates per unit interval. Examples:

- Arrival time series: \(D = \{t_i\} \), rate \(r(t) = \text{events s}^{-1} \)
- Photon # flux: \(D = \{t_i, x_i, y_i\} \), flux \(F(t, x, y) = \text{photons cm}^{-2} \text{ s}^{-1} \)
- Spectrum: \(D = \{\epsilon_i\} \), specific intensity \(I_\epsilon(\epsilon) = \text{cts keV}^{-2} \)
- Population studies: \(D = \{L_i\} \), luminosity function \(n(L) = \text{events/luminosity} \)
If our measurements are coarse, we “bin” events and can only report the number of events in one or more finite intervals. Then the appropriate model is the *Poisson counting process*.

If our measurements have sufficient resolution for us to measure every individual event, the appropriate model is the *Poisson point process*. If the event characteristics are measured with error, it is a *point process with error*.

If the event rate is constant over the entire interval of interest, the process is *homogeneous*; otherwise it is *inhomogeneous*.
Today’s Lecture

- Poisson Process Fundamentals
- Poisson counting processes—Photon counting
- Poisson point processes—Arrival time series
- Point processes with error:
 - Population studies—TNO size distribution
 - Spatio-temporal coincidences—GRBs, cosmic rays
Poisson Process Fundamentals

For simplicity we consider 1-d processes; for concreteness, consider time series.

Let \(r(t) \) be the event rate per unit time.

Let \(E = \text{“An event occured in } [t, t + dt] \text{”} \)

Let \(Q \) denote any kind of information about events occuring or not occuring in other intervals.
A Poisson process model results from two properties (M):

- Given the event rate $r(t)$, the probability for finding an event in a small interval $[t, t + dt]$ is proportional to the size of the interval:

 $$p(E|r, M) = r(t) \, dt$$

- Information about what happened in other intervals is irrelevant if we know r; the probabilities for separate intervals are independent:

 $$p(E|Q, r, M) = p(E|r, M) = r(t) \, dt$$
Homogeneous Poisson Counting Process

Basic datum: The number of events, \(n \), in a given interval of duration \(T \). We seek \(p(n|r, M) \).

No event:

\[
h(t) = P(\text{no event in } [0, t]|r, M); \quad h(0) = 1
\]

\[
A = \text{“No event in } [0, t + dt]\text{”}
\]
\[
= \text{“No event in } [0, t]\text{” AND “No event in } [t, t + dt]\text{”}
\]

\[
P(A|r, M) = h(t + dt) = h(t)[1 - r \, dt]
\]

\[
h(t) + dt \frac{dh}{dt} = h(t) - r \, dt \, h(t)
\]

\[
\frac{dh}{dt} = -r \, h(t)
\]

\[
\Rightarrow h(t) = e^{-rt}
\]
One event:

\[B = \text{“One event is seen in } [0, T] \text{ in } [t_1, t_1 + dt_1]\text{”} \]

\[P(B|r, M) = e^{-rt_1} \cdot (r \, dt_1) \cdot e^{-r(T-t_1)} = e^{-rT} \, r \, dt_1 \]

\[p(n = 1|r, M) = \int_{0}^{T} dt_1 \, r \, e^{-rT} = (rT)e^{-rT} \]
Two events:

\[C = \text{“Two events are seen in } [0, T] \text{ at } (t_1, t_2) \text{ in } (dt_1, dt_2) \” \]

\[
P(C|r, M) = e^{-rt_1} \cdot (r \ dt_1) \cdot e^{-r(t_2-t_1)} \cdot (r \ dt_2) \cdot e^{-r(T-t_2)}
\]

\[= e^{-rT} r^2 \ dt_1 \ dt_2
\]

\[
p(n = 2|r, M) = \int_0^T dt_2 \int_0^{t_2} dt_1 \ r^2 \ e^{-rT}
\]

\[= r^2 \ e^{-rT} \int_0^T dt_2 t_2
\]

\[= \frac{(rT)^2}{2} e^{-rT}
\]

\[\Rightarrow \ p(n|r, M) = \frac{(rT)^n}{n!} e^{-rT}
\]

The Poisson Distribution for \(n \).
Moments:

\[\langle n \rangle \equiv \sum_{n=0}^{\infty} n p(n|r, M) \]

\[= rT \equiv \bar{n} \]

\[\left[\langle (n - \bar{n})^2 \rangle \right]^{1/2} = \sqrt{\bar{n}} \]

\[p(n|\bar{n}, M) = \frac{\bar{n}^n}{n!} e^{-\bar{n}} \]

\(\bar{n} \) specifies both the mean and standard deviation.
Inferring a Rate from Counts

Problem: Observe n counts in T; infer r

Likelihood:

$$\mathcal{L}(r) \equiv p(n|r, M) = p(n|r, M) = \frac{(rT)^n}{n!} e^{-rT}$$

Prior: Two standard choices:

- r known to be nonzero; it is a scale parameter:

$$p(r|M) = \frac{1}{\ln(r_u/r_l)} \frac{1}{r}$$

- r may vanish; require $p(n|M) \sim \text{Const:}$

$$p(r|M) = \frac{1}{r_u}$$
Predictive:

\[
p(n|M) = \frac{1}{r_u n!} \int_0^{r_u} dr (rT)^n e^{-rT}
\]

\[
\approx \frac{1}{r_u T} \quad \text{for} \quad r_u \gg \frac{n}{T}
\]

Posterior: A gamma distribution:

\[
p(r|n, M) = \frac{T(rT)^n}{n!} e^{-rT}
\]

Summaries:

- Mode \(\hat{r} = \frac{n}{T} \); mean \(\langle r \rangle = \frac{n+1}{T} \) (shift down 1 with \(1/r \) prior)
- Std. dev’n \(\sigma_r = \frac{\sqrt{n+1}}{T} \); credible regions found by integrating (can use incomplete gamma function)
The flat prior . . .

Bayes’s justification: Not that ignorance of \(r \rightarrow p(r|I) = C \)

Require (discrete) predictive distribution to be flat:

\[
p(n|I) = \int dr \; p(r|I)p(n|r, I) = C
\]

\[
\rightarrow p(r|I) = C
\]

A convention:

- Use a flat prior for a rate that may be zero
- Use a log-flat prior (\(\propto 1/r \)) for a nonzero scale parameter
- Use proper (normalized, bounded) priors
- Plot posterior with abscissa that makes prior flat
Inferring a Signal in a Known Background

Problem: As before, but \(r = s + b \) with \(b \) known; infer \(s \)

\[
p(s|n, b, M) = C \frac{T [(s + b)T]^n}{n!} e^{-(s+b)T}
\]

\[
C^{-1} = \frac{e^{-bT}}{n!} \int_0^\infty d(sT) (s + b)^n T^m e^{-sT}
\]

\[
= \sum_{i=0}^{n} \frac{(bT)^i}{i!} e^{-bT}
\]

A sum of Poisson probabilities for background events; it can be found using the incomplete gamma function.
The On/Off Problem

Basic problem:

- Look off-source; unknown background rate \(b \)
 Count \(N_{\text{off}} \) photons in interval \(T_{\text{off}} \)
- Look on-source; rate is \(r = s + b \) with unknown signal \(s \)
 Count \(N_{\text{on}} \) photons in interval \(T_{\text{on}} \)
- Infer \(s \)

Conventional solution:

\[
\hat{b} = \frac{N_{\text{off}}}{T_{\text{off}}}; \quad \sigma_b = \sqrt{\frac{N_{\text{off}}}{T_{\text{off}}}} \\
\hat{r} = \frac{N_{\text{on}}}{T_{\text{on}}}; \quad \sigma_r = \sqrt{\frac{N_{\text{on}}}{T_{\text{on}}}} \\
\hat{s} = \hat{r} - \hat{b}; \quad \sigma_s = \sqrt{\sigma_r^2 + \sigma_b^2}
\]

But \(\hat{s} \) can be negative!
Examples

Spectra of X-Ray Sources

Bassani et al. 1989

Di Salvo et al. 2001
Spectrum of Ultrahigh-Energy Cosmic Rays

Nagano & Watson 2000
“Advanced” solutions:

- Higher order approximation (Zhang and Ramsden 1990)
 But for $N_{\text{off}} = 0$ and large T_{off}, confidence region collapses to $s = 0$

- Likelihood-based methods
 Several incorrect attempts (interpret likelihood ratio as coverage; do not account for b uncertainty)
Backgrounds as Nuisance Parameters

Background marginalization with Gaussian noise:

Measure background rate $b = \hat{b} \pm \sigma_b$ with source off.
Measure total rate $r = \hat{r} \pm \sigma_r$ with source on.
Infer signal source strength s, where $r = s + b$.
With flat priors,

$$p(s, b | D, M) \propto \exp \left[-\frac{(b - \hat{b})^2}{2\sigma_b^2} \right] \times \exp \left[-\frac{(s + b - \hat{r})^2}{2\sigma_r^2} \right]$$
Marginalize b to summarize the results for s (complete the square to isolate b dependence; then do a simple Gaussian integral over b):

$$p(s|D, M) \propto \exp \left[-\frac{(s - \hat{s})^2}{2\sigma^2_s} \right] \quad \hat{s} = \hat{r} - \hat{b}$$

$$\sigma^2_s = \sigma_r^2 + \sigma_b^2$$

Background *subtraction* is a special case of background *marginalization*.
Bayesian Solution to On/Off Problem

From off-source data:

\[p(b|N_{\text{off}}) = \frac{T_{\text{off}}(bT_{\text{off}})^{N_{\text{off}}}e^{-bT_{\text{off}}}}{N_{\text{off}}!} \]

Use as a prior to analyze on-source data:

\[
p(s|N_{\text{on}}, N_{\text{off}}) = \int db \ p(s, b | N_{\text{on}}, N_{\text{off}}) \\
\propto \int db \ (s + b)^{N_{\text{on}}}b^{N_{\text{off}}} e^{-sT_{\text{on}}}e^{-b(T_{\text{on}}+T_{\text{off}})} \\
= \sum_{i=0}^{N_{\text{on}}} C_i \frac{T_{\text{on}}(sT_{\text{on}})^i e^{-sT_{\text{on}}}}{i!}
\]

Can show that \(C_i = \) probability that \(i \) on-source counts are indeed from the source.
Example On/Off Posteriors—Short Integrations

\[T_{\text{off}} = 1, \quad N_{\text{off}} = 9 \]

\[N_{\text{on}} = 6 \]

\[N_{\text{on}} = 9 \]

\[N_{\text{on}} = 16 \]
Example On/Off Posteriors—Long Background Integrations

\[T_{\text{off}} = 1, \quad N_{\text{off}} = 9 \]
\[T_{\text{off}} = 10, \quad N_{\text{off}} = 90 \]

\[N_{\text{on}} = 6 \]
\[N_{\text{on}} = 9 \]
\[N_{\text{on}} = 16 \]
Inhomogeneous Point Processes

Arrival Time Series

Data: Set of N arrival times $\{t_i\}$, known with small, finite resolution Δt; $N =$ dozens to millions

Goal: Detect periodicity, bursts, structure...
Conventional methods for period detection

- Binned FFT

- Rayleigh statistic

\[R^2(\omega) = \frac{1}{N} \left[\left(\sum_{i=1}^{N} \sin \phi_i \right)^2 + \left(\sum_{i=1}^{N} \cos \phi_i \right)^2 \right] \]

- \(Z_n^2 \) statistic

\[Z_n^2(\omega) = \sum_{j=1}^{n} R^2(j\omega) \]

- Epoch folding
 - Fold data with trial period \((\phi_i = \omega t_i)\);
 - bin → \(n_j \), \(j = 1 \) to \(M \)
 - Calculate Pearson’s \(\chi^2(\omega) \) vs. \(n_j = N/M \)
Bayesian Approach

Likelihood:

\[
p_0(t) = P(\text{no event in } \Delta t \text{ at } t|\theta, M)
\]
\[
p_1(t) = P(\text{one event in } \Delta t \text{ at } t|\theta, M)
\]

\[\Rightarrow p(D|\theta, M) = \prod_i p_1(t_i) \prod_{\text{empties}} p_0(t)\]

From the Poisson dist’n,

\[
p_0(t) = e^{-r(t)\Delta t}
\]
\[
p_1(t) = r(t)\Delta t e^{-r(t)\Delta t}
\]

\[\Rightarrow p(D|\theta, M) = (\Delta t)^N \exp \left[- \int_T dt \ r(t) \right] \prod_{i=1}^N r(t_i)\]
Likelihood for periodic models:

Rate = avg. rate $A \times$ periodic shape $\rho(\phi)$ (params S)

$$r(t) = A\rho(\omega t - \phi; S)$$

Inhom. point process likelihood (for $T \gg$ period)

$$\mathcal{L}(A, \omega, \phi, S) = \left[A^N e^{-AT}\right] \prod_i \rho(\omega t_i - \phi; S)$$

Marginal likelihood for ω, ϕ, S

$$\mathcal{L}(\omega, \phi, S) = \prod_i \rho(\omega t_i - \phi; S)$$
Example models:

- Log-Fourier models—analytic ϕ marginalization

\[\log \rho(\theta) \propto \kappa \cos(\theta) \rightarrow \mathcal{L} \propto I_0 [\kappa NR(\omega)] / I_0^N(\kappa) \]

Harmonic sum \rightarrow $Z_n^2 + \text{interference terms}$

- Piecewise constant models—analytic S marginalization

\[\rho \text{ flat in } M \text{ bins} \rightarrow \mathcal{L} \propto \frac{(M-1)!}{(N+M-1)!} \left[\frac{n_1!n_2!...n_M!}{N!} \right] \]

For signal detection, integrate over ω, rather than maximize over a grid. This removes ambiguity/subjectivity from conventional approach.
Piecewise Constant Modeling of X-Ray Pulsar

X-Ray Pulsar PSR 0540-693 (Gregory & Loredo 1996)

3300 events over 10^5 s, many gaps, FFT fails
Multiple searches for Trans-Neptunian Objects report \(\{ R_i, \sigma_i \} \) or non-detections. What are the sizes of TNOs? How far out does the pop’n extend?
Phenomenology

Cumulative dist’n $\Sigma(R) = 10^{\alpha(R-R_0)}$, params α, R_0
Differential dist’n $\sigma(R) = d\Sigma/dR$

Physics

Size dist’n $f(D)$ and radial dist’n $n(r)$
Visible via reflection \rightarrow calculate R from D^2/r^4 law

Conventional analyses

Least squares or χ^2 fit to binned cumulative dist’n
Ignores uncertainties; ambiguity in correcting for sampling; difficulty handling nondetections; difficulty combining disparate types of data; arbitrary, correlated bins
Bayesian approach

Multiply likelihoods for each survey modeled as point process with error,

\[\mathcal{L}(\theta) = \exp \left[-\Omega \int dR \eta(R) \sigma(R) \right] \prod_i \int dR \ell_i(R) \sigma(R) \]

A point process likelihood, including detection efficiency, \(\eta(R) \), and object uncertainties, \(\ell_i(R) = p(d_i|R) \).

Gladman et al. 1998, 2001
Spatio-Temporal Coincidences
Do GRB sources repeat?

250 GRB directions
Subset with neighbor within 3° (39)

If GRBs repeat, many existing models are ruled out!
Coincidences Among UHE Cosmic Rays?
AGASA data above GZK cutoff (Hayashida et al. 2000)

AGASA + A20

- 58 events with $E > 4 \times 10^{19}$ eV
- Energy-dependent direction uncertainty $\sim 2^\circ$
- Significance test — Search for coincidences $< 2.5^\circ$:
 - 6 pairs; $\lesssim 1\%$ significance
 - 1 triplet; $\lesssim 1\%$ significance
Frequentist nearest neighbor analysis—two objects:

Null hypothesis H_0: no repetition, isotropic source dist’n

Statistic: Angle to nearest neighbor, θ_{12}

Sampling Dist’n:

$$p(\cos \theta_{12}, \phi_{12}) = \frac{1}{4\pi}, \quad \text{independent of uncertainty}$$

$$\rightarrow p(\theta_{12}) = \frac{\sin \theta_{12}}{2}$$

$$p(< \theta_{12}) = \frac{1 - \cos \theta_{12}}{2}$$

Reject H_0 if this probability is small; e.g.:

- $\theta_{12} = 26^\circ \rightarrow p(< 26^\circ) = 0.05$
- $\theta_{12} = 0^\circ \rightarrow p(< 0^\circ) = 0$
Bayesian coincidence assessment—two objects:

Direction uncertainties accounted for via likelihoods for object directions:

\[\mathcal{L}_i(n) = p(d_i|n), \quad \text{normalized w.r.t. } n \]

\(H_0\): No repetition

\[
p(d_1, d_2|H_0) = \int d\mathbf{n}_1 \ p(\mathbf{n}_1|H_0) \ \mathcal{L}_1(\mathbf{n}_1) \times \int d\mathbf{n}_2 \cdots \\
= \frac{1}{4\pi} \int d\mathbf{n}_1 \ \mathcal{L}_1(\mathbf{n}_1) \times \frac{1}{4\pi} \int d\mathbf{n}_2 \cdots \\
= \frac{1}{(4\pi)^2} \]
H_1: Repeating (same direction!)

\[p(d_1, d_2|H_0) = \int d\mathbf{n} \, p(\mathbf{n}|H_0) \, \mathcal{L}_1(\mathbf{n}) \, \mathcal{L}_2(\mathbf{n}) \]

Odds favoring repetition:

\[O = 4\pi \int d\mathbf{n} \, \mathcal{L}_1(\mathbf{n}) \, \mathcal{L}_2(\mathbf{n}) \approx \frac{2}{\sigma_{12}^2} \exp \left[-\frac{\theta_{12}^2}{2\sigma_{12}^2} \right]; \quad \sigma_{12}^2 = \sigma_1^2 + \sigma_2^2 \]

E.g.: $\sigma_1 = \sigma_2 = 10^\circ$ \quad $O \approx 6$ for $\theta_{12} = 26^\circ$

\quad $O \approx 33$ for $\theta_{12} = 0^\circ$

$\sigma_1 = \sigma_2 = 20^\circ$ \quad $O \approx 5$ for $\theta_{12} = 26^\circ$

\quad $O \approx 8$ for $\theta_{12} = 0^\circ$
Compare or Reject Hypotheses?

Frequentist Significance Testing (G.O.F. tests):

- Specify simple null hypothesis H_0 such that rejecting it implies an interesting effect is present.
- Divide sample space into probable and improbable parts (for H_0).
- If D_{obs} lies in improbable region, reject H_0; otherwise accept it.

![Diagram showing the probability distribution $P(D|H)$ with D_{obs} and H_0. The area under the curve to the right of D_{obs} is shaded, indicating a probability of 95%.](image)
Bayesian Model Comparison:

- Favor the hypothesis that makes the observed data most probable (up to a prior factor)

If the data are improbable under H_0, the hypothesis *may* be wrong, or a rare event may have occurred. GOF tests reject the latter possibility at the outset.
Challenge: Large hypothesis spaces

For $N = 2$ events, there was a single coincidence hypothesis, M_1 above.

For $N = 3$ events:

- Three doublets: $1 + 2$, $1 + 3$, or $2 + 3$
- One triplet

For N events, # of hypotheses with n_k k-tuplets (n_2 doublets, n_3 triplets...)

$$\mathcal{N} = \frac{N!}{\prod_{k=1}^{K} (k!)^{n_k} n_k!}$$

E.g. for $n_2 = 2$, $\mathcal{N} \approx N^4 / 8$.
Bayesian Analysis of AGASA Cosmic Rays

M_0: $N = 58$ different directions

M_1: Unknown number of pairs (n_2) and triplets (n_3)

$\rightarrow O_{10} = 1.4$ favoring clusters (i.e., no significant evidence)

If indeed clusters are present, we can constrain the number by calculating $p(n_2, n_3 | D, M_1)$:
Key Ideas

Poisson processes handled without approximation

- Counting processes:
 - Can treat rigorously for any n
 - Backgrounds handled straightforwardly
- Point processes: No binning necessary!
- Point processes with error: Uncertainties easily handled