Sloshing in High Speed Galaxy Interactions

Authors: Zeltwanger, T., Comins, N.F., Lovelace R.V.E., 

Observations of lopsided spiral galaxies motivated us to explore whether the rapid passage of a companion galaxy could cause them. We examine whether the center of mass of the visible matter becomes displaced from the center of mass of the dark halo during the intruder's passage, thereby causing an asymmetric response and asymmetric structure. Two dimensional $N$-body simulations indicate that this can happen.
We also explore some consequences of this offset. These include the center of mass of the visible disk following a decaying orbit around the halo center of mass and the development of transient one-armed spirals that persist for up to six rotation periods.
We then study the results of a variety of initial conditions based on such offsets. We report on the results of several runs in which we initially offset a disk from its halo's center of mass by an amount typical of the above interaction. In some runs the halo is free to move, while in others it is held fixed. We used three different mass distributions for the halo in these runs. We find that the disk's center of mass spiraled inward creating a variety of observed or observable phenomena including one-armed spirals, massive clumps of particles, and counter-rotating waves. The systems settle into relatively axisymmetric configurations. Whether or not the end states included a bar depended on a variety of initial conditions.



[Questions & comments]
Last updated on 29.01.07