Physics 6554 : Problem Set 10
Due Thursday, April 18, 2013

1. [10 points] Decomposition of the 4D covariant derivative in terms of 3D derivatives:
Suppose that spacetime is foliated by a set of spacelike hypersurfaces, on which the unit timelike normal is \(\vec{n} \). We define \(P_{\alpha \beta} = g_{\alpha \beta} + n_\alpha n_\beta \) to be the projection tensor, \(a^\alpha = n^\beta \nabla_\beta n^\alpha \) to the acceleration of the normal vector, \(K_{\alpha \beta} = P_\alpha ^\gamma P_\beta ^\delta \nabla_\gamma n_\delta \) to be the extrinsic curvature tensor, and \(D_\alpha \) to be the intrinsic derivative operator in each hypersurface. Given any dual vector \(\upsilon_\alpha \), we can decompose it uniquely as \(\upsilon_\alpha = v_n_\alpha + w_\alpha \), where \(v = -n_\alpha v^\alpha \) and \(w_\alpha n^\alpha = 0 \). Derive the following formula for the covariant derivative of the dual vector:
\[
\nabla_\gamma \upsilon_\beta = [D_\gamma w_\beta + v K_{\gamma \beta}] + n_\gamma \left[-(\mathcal{L}_{\vec{n}} w)_\beta + K_{\gamma \sigma} w_\sigma - v a_\beta \right] + \left[D_\gamma v + K_{\gamma \sigma} w_\sigma \right] n_\beta - n_\gamma n_\beta \left[a^\sigma w_\sigma + \mathcal{L}_{\vec{n}} v \right].
\]

2. Physics of a Thin Spherical Shell: Consider an initial data set for Einstein equations of the following form. The extrinsic curvature tensor and matter current vanish, the 3-metric is
\[
ds^2 = \psi(r)^4 \left[dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right],
\]
where \(\psi(r) \to 1 \) as \(r \to \infty \), and the mass density describes a thin shell of coordinate radius \(R \): \(\rho(r) = \rho_0 \delta(r - R) \).

a. Solve the initial value equations to show that \(\psi = 1 + M/(2r) \) for \(r \geq R \), where \(M \) is a constant, and that \(\psi = 1 + M/(2R) \) for \(r \leq R \). By comparing with the Newtonian limit in the limit \(r \to \infty \) argue that \(M \) is the ADM mass.

b. Show that the proper (physical) radius of the shell is
\[
R_p = \left(1 + \frac{M}{2R} \right)^2 R.
\]

c. Define \(M_p \) to be the integral of the mass density with respect to proper volume, and define the gravitational binding energy to be \(E_{\text{bind}} = M - M_p \). Show that this binding energy is given by
\[
\frac{E_{\text{bind}}}{M} = \frac{\lambda - 1 + \sqrt{1 - 2\lambda}}{\lambda},
\]
where \(\lambda = M/R_p \). Show that this reduces to the expected answer in the Newtonian limit: \(E_{\text{bind}} = -M^2/(2R_p) + \cdots \).

d. For a shell of given ADM mass \(M \), what is the smallest possible value of proper size \(R_p \)?

3. Arnowitt-Deser-Misner (ADM) 3+1 decomposition: Consider a spacetime with coordinates \((t,x^i)\) and with metric
\[
ds^2 = -\alpha^2 dt^2 + h_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt).
\]
Here the lapse function \(\alpha \), the shift vector \(\beta^i \) and the spatial metric \(h_{ij} \) are arbitrary functions of space and time.

a. Show that the components of the inverse metric are \(g^{tt} = -1/\alpha^2 \), \(g^{ti} = \beta^i/\alpha^2 \), and \(g^{ij} = h^{ij} - \beta^i \beta^j/\alpha^2 \), where \(h^{ij} h_{jk} = \delta^i_k \).

b. Show that the unit, future directed normal vector to the \(t = \) constant hypersurfaces is \(\vec{n} = (\partial_t - \beta^i \partial_i)/\alpha \), and that the corresponding 1-form is \(\textbf{n} = -\alpha dt \).

c. Show that the extrinsic curvature tensor \(K_{ij} \) is given by \(2\alpha K_{ij} = \dot{h}_{ij} - D_i \beta_j - D_j \beta_i \), where \(D_i \) is the intrinsic derivative operator associated with the metric \(h_{ij} \) and dots denote derivatives with respect to \(t \).

d. The acceleration of the unit normals is defined by \(a^\alpha = n^\beta \nabla_\beta n^\alpha \). Show that the contravariant components of the acceleration are \(a^t = 0 \), \(a^i = D^i(\ln \alpha) \).