A590 – Problem Set #1

Due: September 9, 2004

Please work on this problem set by yourself. It will be used as part of your grade.

1) Suppose a filter with a square-wave (box-car) profile is centered at νᵣ with width ∆ν. You mistakenly choose a frequency

\[\nu_o = \nu_r + \xi \Delta \nu \]

as the effective wavelength of your filter where \(\xi \) is the fractional amount you are off compared to the bandpass. Assume source fluxes have the form:

\[f_\nu = f_r (\nu/\nu_r)^\alpha \]

Initial photometric calibration is done assume \(\alpha = -1 \) for all sources. Let us call this flux \(f_o \) at wavelength \(\nu_o \).

a) Derive expressions for the actual flux in terms \(f_o \) for sources that have \(\alpha = 0, 1, \) and 2.

Simplify your expressions assuming \(\Delta \nu / \nu_r \ll 1 \).

b) What happens as \(\xi \) gets larger?

c) What happens as \(\xi \) goes to zero?

2) The signal-to-noise ratio for many optical and infrared imaging systems can be written as

\[S/N = \frac{N_s t}{\sqrt{N_s t + pN_B t + pR_N^2}} \]

where \(N_s \) is the number of photons per second detected from the source (over the area integrated), \(N_B \) is the number of background photons detected per pixel, \(p \) is the number of pixels used to extract the source, and \(R_N \) is the read noise of the device, and \(t \) is the integration time. This expression is valid because photon noise follows Poisson statistics in this regime and the noises add in quadrature.

Let us look at the Wide-field Infrared Camera (WIRC) located at Palomar. WIRC images to 0.2487 arcsec/pix, has a read noise of ~ 12 electrons, and has a gain of 5.467 e-/DN. The background at Ks is approximately 400 DN/sec/pix and the response is about 11 DN/sec for a 20th magnitude star.

It is found that WIRC achieves S/N = 5 on a Ks = 20.6 source in 3600 seconds using a 2 arcseconds diameter aperture to extract the source

a) Suppose you wish to observe a galaxy that is 2 x 1 arcminutes across. What integrated Ks magnitude must the galaxy have to achieve S/N = 10 in one hour?

b) For the same size galaxy, what Ks magnitude yields S/N = 10 in 4 hours?
3) Assume that the apparent bolometric magnitude of the Sun is -26.82.
 a) Determine the zero point (luminosity at zero magnitude) of the bolometric magnitude scale.

4) Suppose a galaxy has an episode of star formation started 10^9 years ago and has been proceeding at a rate of $2\, M_{\text{Sun}}/\text{yr}$ since then.
 a) What population of stars would be present today, e.g. $dn(m)/dm$ vs. m?
 b) Estimate the total accumulated mass in stars.
 c) Estimate the current luminosity of the galaxy.

Assume that only stars with $M > 0.5\, M_{\text{Sun}}$ are produced. Be sure to state any assumptions you make in solving the problem.