CMB and SZ Science with a 25-m Atacama Telescope

Sunil Golwala
Caltech
October 11, 2003
CMB and SZ Science Topics

- Pointed observations of known clusters to measure peculiar velocities
- Blind surveys for clusters using thermal SZ
- Secondary anisotropy due to thermal SZ
- Secondary anisotropy due to kinetic SZ
- High-l Polarization

Running assumptions:
- \(\text{NET per pixel} \sim 400 \ K_{\text{CMB}} \sqrt{s} \)
- Assume \(\sim 1 \text{ deg}^2 \text{ FOV} \)
- \(\rightarrow \text{can map} \ 100 \text{ deg}^2 \text{ to} \ 5 \ K_{\text{CMB}} \text{ per beam in 1 live-week} \)
- Not crazy: ACBAR had \(400 \ K_{\text{CMB}} \sqrt{s} \) with 40K of loading and mapped 10 \(\text{deg}^2 \) to 5 \(K_{\text{CMB}} \) per beam in 16 weeks (austral winter at south pole) with 8 pixels
The Sunyaev-Zeldovich Effect in Galaxy Clusters

- Thermal SZE is the Compton up-scattering of CMB photons by electrons in hot, intracluster plasma.

\[\frac{\Delta T_{\text{CMB}}}{T_{\text{CMB}}} \] depends only on cluster \(y \sim \) line-of-sight integral of \(n_e T_e \). Both \(\Delta T_{\text{CMB}} \) and \(T_{\text{CMB}} \) are redshifted similarly \(\rightarrow \) ratio unchanged as photons propagate and independent of cluster distance.

- Thermal SZE causes nonthermal change in spectrum. CMB looks colder to left of peak, hotter to right.

Sunyaev & Zeldovich (1980)

galaxy cluster with hot ICM
\(z \sim 0 - 3 \)

scattered photons (hotter)

observer \(z = 0 \)

CMB photons
\(T = (1 + z) \times 2.725 \text{K} \)

last scattering surface
\(z \sim 1100 \)
The Sunyaev-Zeldovich Effect in Galaxy Clusters

- **Kinetic SZE**: essentially a Doppler shift
 - Cluster sees CMB dipole due to its peculiar motion, but scatters isotropically in rest frame, producing anisotropy in CMB rest frame
 - $\Delta T_{\text{CMB}}/T_{\text{CMB}} = -\tau_e (v/c)$ where τ_e is the Thomson optical depth.
 - Change in spectrum is completely thermal (identical to CMB primary anisotropy); like dipole anisotropy due to motion relative to CMB rest frame.
 - Polarity: if cluster is moving toward observer, CMB appears hotter toward cluster
The Sunyaev-Zeldovich Effect in Galaxy Clusters

- Beautiful images of SZ from Carlstrom group using OVRO/BIMA interferometers at 30 GHz
- Spectrum confirmed by measurements from Rayleigh-Jeans tail through the null
- To date, only seen in pointed observations of massive clusters
In principle, could measure peculiar velocities of a large catalog of galaxy clusters using kinetic effect

Raw sensitivity is there:
- POTENT: typical error \(\sim 250 \text{ km/s} \) on 3000 galaxy sample; \(\sigma / \sqrt{N} \sim 4.5 \text{ km/s} \)
- SZ: suppose one does the 100 MACS clusters; need \(\sigma \sim 45 \text{ km/s} \) to compete
- \(\Delta T \sim (0.01) \frac{45}{300000} (2.7) = 4 \ K_{\text{CMB}} \)

Really a matter of systematics and scan strategy
- No experience yet in detecting kinetic effect with bolometer arrays
- Much harder to simulate than finding point sources because the clusters are big
- Not especially well-suited to 25 m: clusters will be overresolved, so collecting area is to some extent wasted
- But high resolution could be helpful for understanding cluster astrophysics systematics that might otherwise prove limiting factor
“Unbiased” Cluster Detection via the SZE

- “Unbiased” = mass-limited
- Effect is intrinsically redshift-independent: $\Delta T/T$ depends only on cluster properties, ΔT and T experience same redshift
- Integrated SZE over cluster provides largely z-independent mass limit (Barbosa et al, Holder et al, etc.)

\[
S_{tot} = \frac{2k_B^2\nu^2 g(x)\sigma_T T_{CMB}}{m_e c^4 d_A(z)^2} \langle T_e \rangle_n \frac{M_{200} f_{ICM}}{\mu_e m_p}
\]

- Integrate $n_e T_e$ over cluster face
- dA^2 factor tends to reduce flux as z increases ($1/r^2$ law)
- But for a given mass, a cluster at high redshift has smaller R and hence higher T
- These two effects approximately cancel
- Influence of cluster gas physics:
 - $SZ \propto n_e T_e =$ pressure X-ray $\propto n_e^2 \sqrt{T_e}$ optical $\propto ?$
 - Pressure is the smoothest physical parameter – see simulations.
 - X-ray generically clumpier than SZ.
“Unbiased” Cluster Detection via the SZE

- Holder, Mohr, et al. (2000) modeled the mass limit of an interferometric SZE survey using simulations of cluster growth
- Simulations bear out expectation of weak z-dependence of mass limit
- Very different selection function from optical/x-ray surveys
- For any survey, careful modelling will be required to determine this precisely, understand uncertainties

Science with Unbiased Surveys for Clusters

- Redshift distribution of clusters is sensitive to cosmological parameters (Ω_m, Λ, w) and amplitude of density fluctuations (σ_8)

- e.g. SPT 4000 deg2 in 1 season to 10 K$_\text{CMB}$ per 1 arcmin beam, with photo-z’s for 3000 deg2
Science with Unbiased Surveys for Clusters

- Redshift distribution of clusters is sensitive to cosmological parameters (Ω_m, Λ, w) and amplitude of density fluctuations (σ_8)
- e.g. SPT 4000 deg2 in 1 season to $10 \ K_{CMB}$ per 1 arcmin beam, with photo-z's for 3000 deg2
Secondary CMB Anisotropy

• Rather than looking at single objects, consider cumulative secondary anisotropy imprinted by ensemble of large-scale structure

 ♦ Thermal SZ:
 • cumulative thermal SZ from clusters and the globally reionized IGM
 • dominant, but separable from primary and other secondary by frequency spectrum

 ♦ Kinetic SZ: gives rise to many different effects
 • no “first-order” effect: because velocity flows $v(k) \propto \text{mass fluctuations } \delta(k)$ and therefore are irrotational to 1st order, there is cancellation along line-of-sight in $n_e(v/c)$ (every $+v$ has an associated $-v$)
 • many “second-order” effects
 – “Ostriker-Vishniac” or “Vishniac” – retain linear relation between v and δ, but include second-order evolution of perturbations → see effects due to interaction of $v(k_1)$ with $\delta(k_2)$, so line-of-sight cancellation does not occur
 – “Nonlinear Kinetic” or “Nonlinear Ostriker-Vishniac” – allow for nonlinear gravitational collapse, breaking down linear relation between $v(k)$ and $\delta(k)$
 – “Patchy Reionization” – fluctuations in n_e due to details of onset of reionization
Secondary CMB Anisotropy

- $l = 10000 \rightarrow 1$ arcmin
- Nontrivial spread in predictions
- All within factor of a few of $1 \mu K_{\text{CMB}}^2$ for OV
- All agree that patchy reion. is subdominant
Secondary CMB Anisotropy

- Why bother with kinetic effects?
 - Thermal is dominated by largest objects because it depends on T in addition to n_e; lower-mass objects and the IGM are much colder
 - OV and non-linear OV less biased, dominated by “2-halo” effects (because dependent on velocity field)
 - Patchy reionization traces redshift of reionization; angular PS and non-Gaussianity trace size of reionized bubbles
Secondary CMB Anisotropy

- Current state of the art
- Significant improvement likely between now and 25m first light
 - APEX, SPT (and maybe ACT) will come online before 25m
 - The thermal SZ signal will be measured
 - SZ signal will be cross-correlated with redshift surveys

Goldstein *et al*, astro-ph/0212517

\(\Delta T^2 [\mu K^2]\)

\(\sigma_{\delta Z} = 0.98\)

\(30\text{GHz}\)

\(150\text{GHz}\)

\(\Delta T_{\text{CMB}}\) at 30 and 150 GHz (~ x 2)
• Thermal signal
 - ~ few to 10 μK_{CMB} on 1 arcmin scales
 - dominated by most massive clusters
 - can possibly do cosmological params/dark energy (with redshift info)

• Kinetic signal
 - 1 μK_{CMB} or less on 1 arcmin scales
 - OV more sensitive to lower masses → say more about LSS than cosmology
 - Patchy reionization may give access to reionization physics, but order of magnitude smaller and difficult to separate from OV

• Does a 25-m telescope help? Yes! Error on C_l scales as $\exp(l^2\sigma^2)$.
 - APEX: 1 arcmin → factor of 5 degradation at $l = 10000$
 - SPT: 1.3 arcmin → factor of 13 degradation at $l = 10000$
 - 25m: 0.5 arcmin → factor of 1.5 degradation at $l = 10000$
 - (these assume conservative edge tapers on primary)
Polarization Anisotropies

- Hu (2000) calculates polarization on small scales arising from assorted quadrupole effects:
 - "Thomson scattering of quadrupole anisotropies, kinetic (second order Doppler) quadrupole anisotropies and intrinsic quadrupole anisotropies."
 - All these signals are really small (Hu’s OV effect has peak amplitude $2 \mu K_{\text{CMB}}$)

FIG. 2.— Polarization for the fiducial ΛCDM model with $\tau = 0.1$ separated into E (solid lines) and B (dashed lines) contributions. Secondary anisotropies from the primordial quadrupole are labeled (Prim. Q): (upper) homogeneous scattering; (lower) density (δ_b) and ionization (X) modulated scattering following Fig. 1. For the kinematic quadrupole, the homogeneous and density modulated signals are shown; the ionization modulated and intrinsic quadrupole signals falls below this range. Note that the B-parity polarization induced by gravitational lensing is much larger than any of these secondary B signals.
• Measure polarization of SZ in galaxy clusters
 ◆ Each cluster measures the quadrupole for its last-scattering surface
 ◆ Overcomes cosmic variance limit on quadrupole
 ◆ Quadrupole sensitive to dark energy via ISW effect
 ◆ Provides measurement of evolution of dark energy → eqn of state
 ◆ “a truly challenging measurement”
CMB/SZ Summary

• Raw sensitivity is there for peculiar velocities, but systematics and scan strategy are the issue
• Blind thermal SZ surveys doable and interesting for cosmological parameters/LSS
• Detection of OV effect probably doable and interesting for LSS
• Patchy reionization and polarization anisotropy both v. difficult and probably not all that interesting
• Cluster SZ polarization interesting but probably too hard
• Better angular resolution of a 25m could provide significant gains at high l with respect to projects already underway (APEX, ACT, SPT)
• To do: realistic expected sensitivities, input from theorists (Cooray, Kamionkowski at Caltech)